紫穗槐和臭椿提取物的遗传毒性/抗原性、致突变性/抗突变性和致癌性/抗癌性筛选

Q4 Environmental Science
BioRisk Pub Date : 2022-04-21 DOI:10.3897/biorisk.17.77327
T. Todorova, K. Boyadzhiev, Aleksandar Shkondrov, P. Parvanova, M. Dimitrova, I. Ionkova, I. Krasteva, E. Kozuharova, S. Chankova
{"title":"紫穗槐和臭椿提取物的遗传毒性/抗原性、致突变性/抗突变性和致癌性/抗癌性筛选","authors":"T. Todorova, K. Boyadzhiev, Aleksandar Shkondrov, P. Parvanova, M. Dimitrova, I. Ionkova, I. Krasteva, E. Kozuharova, S. Chankova","doi":"10.3897/biorisk.17.77327","DOIUrl":null,"url":null,"abstract":"The aim of the present study was to evaluate the potential genotoxic/antigenotoxic, mutagenic/antimutagenic, and carcinogenic/anticarcinogenic effect of Amorpha fruticosa (AF) fruit, Ailanthus altissima bark hexane (AAEH) and methanol (AAEM) extracts on a model system Saccharomyces cerevisiae.\n Plants were identified and extracted by Ekaterina Kozuharova. Three concentrations of each extract were tested – 10, 100 and 1000 µg/ml. In vitro pro-oxidant/antioxidant activities were evaluated by DPPH and DNA topology assay. The potential genotoxic/antigenotoxic, mutagenic/antimutagenic and carcinogenic/anticarcinogenic effects were revealed in vivo by: Zimmermman’s test on Saccharomyces cerevisiae diploid strain D7ts1, and Ty1 retrotransposition test on S. cerevisiae haploid strain 551. Zeocin was used as a positive control.\n Based on the in vitro antioxidant activity the extracts could be arranged as follows: AF>AAEM>AAEH. AAEH possessed moderate oxidative potential. No genotoxic and mutagenic capacity was obtained in vivo for extracts tested. The levels of total aberrants, convertants and revertants were comparable with the control ones. No Ty1 retrotransposition was induced by extracts treatment. Further, the extracts possessed well-expressed antigenotoxic, antimutagenic and anticarcinogenic activity. Significant reduction of the total aberrants, reverse point mutations and Ty1 retrotransposition was obtained. Only the AF extract was found to reduce the levels of zeocin-induced mitotic gene conversion.\n The three extracts did not possess any genotoxic, mutagenic and carcinogenic effect on Saccharomyces cerevisiae. Based on their protective activity, they can be arranged as follows: AF>AAEM>AAEH which corresponds well with their phytochemical composition. Further experiments could provide more detailed information concerning the mode of action of extracts, as well as their main constituents.","PeriodicalId":38674,"journal":{"name":"BioRisk","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Screening of Amorpha fruticosa and Ailanthus altissima extracts for genotoxicity/antigenotoxicity, mutagenicity/antimutagenicity and carcinogenicity/anticarcinogenicity\",\"authors\":\"T. Todorova, K. Boyadzhiev, Aleksandar Shkondrov, P. Parvanova, M. Dimitrova, I. Ionkova, I. Krasteva, E. Kozuharova, S. Chankova\",\"doi\":\"10.3897/biorisk.17.77327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study was to evaluate the potential genotoxic/antigenotoxic, mutagenic/antimutagenic, and carcinogenic/anticarcinogenic effect of Amorpha fruticosa (AF) fruit, Ailanthus altissima bark hexane (AAEH) and methanol (AAEM) extracts on a model system Saccharomyces cerevisiae.\\n Plants were identified and extracted by Ekaterina Kozuharova. Three concentrations of each extract were tested – 10, 100 and 1000 µg/ml. In vitro pro-oxidant/antioxidant activities were evaluated by DPPH and DNA topology assay. The potential genotoxic/antigenotoxic, mutagenic/antimutagenic and carcinogenic/anticarcinogenic effects were revealed in vivo by: Zimmermman’s test on Saccharomyces cerevisiae diploid strain D7ts1, and Ty1 retrotransposition test on S. cerevisiae haploid strain 551. Zeocin was used as a positive control.\\n Based on the in vitro antioxidant activity the extracts could be arranged as follows: AF>AAEM>AAEH. AAEH possessed moderate oxidative potential. No genotoxic and mutagenic capacity was obtained in vivo for extracts tested. The levels of total aberrants, convertants and revertants were comparable with the control ones. No Ty1 retrotransposition was induced by extracts treatment. Further, the extracts possessed well-expressed antigenotoxic, antimutagenic and anticarcinogenic activity. Significant reduction of the total aberrants, reverse point mutations and Ty1 retrotransposition was obtained. Only the AF extract was found to reduce the levels of zeocin-induced mitotic gene conversion.\\n The three extracts did not possess any genotoxic, mutagenic and carcinogenic effect on Saccharomyces cerevisiae. Based on their protective activity, they can be arranged as follows: AF>AAEM>AAEH which corresponds well with their phytochemical composition. Further experiments could provide more detailed information concerning the mode of action of extracts, as well as their main constituents.\",\"PeriodicalId\":38674,\"journal\":{\"name\":\"BioRisk\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioRisk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/biorisk.17.77327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioRisk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/biorisk.17.77327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是评估紫穗槐(AF)果实、臭椿皮己烷(AAEH)和甲醇(AAEM)提取物对酿酒酵母模型系统的潜在遗传毒性/抗原毒性、诱变/抗突变和致癌/抗癌作用。叶卡捷琳娜·科祖哈罗娃对植物进行了鉴定和提取。测试了每种提取物的三种浓度——10、100和1000µg/ml。通过DPPH和DNA拓扑分析评价体外促氧化剂/抗氧化活性。通过对酿酒酵母二倍体菌株D7ts1的Zimmermman试验和对酿酒酵母单倍体菌株551的Ty1逆转录转座试验,在体内揭示了潜在的遗传毒性/抗原毒性、诱变/抗突变和致癌/抗癌作用。Zeocin作为阳性对照。根据体外抗氧化活性,提取物可按以下顺序排列:AF>AAEM>AAEH。AAEH具有中等氧化潜能。所测试的提取物在体内未获得基因毒性和诱变能力。总变异株、转化株和回复株的水平与对照组相当。提取物处理未诱导Ty1逆转录转位。此外,提取物具有良好表达的抗原性、抗突变性和抗癌活性。总变异、反向点突变和Ty1逆转录转座显著减少。只有AF提取物被发现可以降低博来霉素诱导的有丝分裂基因转化的水平。三种提取物对酿酒酵母均不具有遗传毒性、致突变性和致癌作用。根据它们的保护活性,它们可以排列为:AF>AAEM>AAEH,这与它们的植物化学组成非常一致。进一步的实验可以提供关于提取物的作用模式及其主要成分的更详细的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening of Amorpha fruticosa and Ailanthus altissima extracts for genotoxicity/antigenotoxicity, mutagenicity/antimutagenicity and carcinogenicity/anticarcinogenicity
The aim of the present study was to evaluate the potential genotoxic/antigenotoxic, mutagenic/antimutagenic, and carcinogenic/anticarcinogenic effect of Amorpha fruticosa (AF) fruit, Ailanthus altissima bark hexane (AAEH) and methanol (AAEM) extracts on a model system Saccharomyces cerevisiae. Plants were identified and extracted by Ekaterina Kozuharova. Three concentrations of each extract were tested – 10, 100 and 1000 µg/ml. In vitro pro-oxidant/antioxidant activities were evaluated by DPPH and DNA topology assay. The potential genotoxic/antigenotoxic, mutagenic/antimutagenic and carcinogenic/anticarcinogenic effects were revealed in vivo by: Zimmermman’s test on Saccharomyces cerevisiae diploid strain D7ts1, and Ty1 retrotransposition test on S. cerevisiae haploid strain 551. Zeocin was used as a positive control. Based on the in vitro antioxidant activity the extracts could be arranged as follows: AF>AAEM>AAEH. AAEH possessed moderate oxidative potential. No genotoxic and mutagenic capacity was obtained in vivo for extracts tested. The levels of total aberrants, convertants and revertants were comparable with the control ones. No Ty1 retrotransposition was induced by extracts treatment. Further, the extracts possessed well-expressed antigenotoxic, antimutagenic and anticarcinogenic activity. Significant reduction of the total aberrants, reverse point mutations and Ty1 retrotransposition was obtained. Only the AF extract was found to reduce the levels of zeocin-induced mitotic gene conversion. The three extracts did not possess any genotoxic, mutagenic and carcinogenic effect on Saccharomyces cerevisiae. Based on their protective activity, they can be arranged as follows: AF>AAEM>AAEH which corresponds well with their phytochemical composition. Further experiments could provide more detailed information concerning the mode of action of extracts, as well as their main constituents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioRisk
BioRisk Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.40
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信