时间序列的基准化与协调:一种应用贝叶斯方法

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
J. Rojo-García, J. Sanz-Gómez
{"title":"时间序列的基准化与协调:一种应用贝叶斯方法","authors":"J. Rojo-García, J. Sanz-Gómez","doi":"10.1027/1614-2241/a000136","DOIUrl":null,"url":null,"abstract":"The present article features a hierarchical Bayes method applied to solving problems of benchmarking and contemporaneous reconciliation across time series. This method enables the use of high frequency series to be either approximations or one or several related indicators. This method may be applied when facing flow or index disaggregation problems. The authors compare their results to classical procedures (viz., Denton univariate and Rossi multivariate methods) through the use of indicators. This article concludes that the suggested method bestows greater importance on the low frequency series profile, consequently providing smoother solutions than its counterparts.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"13 1","pages":"123–134"},"PeriodicalIF":2.0000,"publicationDate":"2017-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Benchmarking and Reconciliation of Time Series: An Applied Bayesian Method\",\"authors\":\"J. Rojo-García, J. Sanz-Gómez\",\"doi\":\"10.1027/1614-2241/a000136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present article features a hierarchical Bayes method applied to solving problems of benchmarking and contemporaneous reconciliation across time series. This method enables the use of high frequency series to be either approximations or one or several related indicators. This method may be applied when facing flow or index disaggregation problems. The authors compare their results to classical procedures (viz., Denton univariate and Rossi multivariate methods) through the use of indicators. This article concludes that the suggested method bestows greater importance on the low frequency series profile, consequently providing smoother solutions than its counterparts.\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"13 1\",\"pages\":\"123–134\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/a000136\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/a000136","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文采用层次贝叶斯方法来解决跨时间序列的基准和同期和解问题。这种方法使高频序列的使用既可以是近似值,也可以是一个或几个相关指标。这种方法可以应用于流或索引分解问题。作者通过使用指标将他们的结果与经典程序(即丹顿单变量和罗西多变量方法)进行比较。本文的结论是,所建议的方法给予低频系列轮廓更大的重要性,因此提供更平滑的解决方案比其同行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking and Reconciliation of Time Series: An Applied Bayesian Method
The present article features a hierarchical Bayes method applied to solving problems of benchmarking and contemporaneous reconciliation across time series. This method enables the use of high frequency series to be either approximations or one or several related indicators. This method may be applied when facing flow or index disaggregation problems. The authors compare their results to classical procedures (viz., Denton univariate and Rossi multivariate methods) through the use of indicators. This article concludes that the suggested method bestows greater importance on the low frequency series profile, consequently providing smoother solutions than its counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信