基于OFDM认知无线电的仿生方法

IF 0.3 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
N. A. Saoucha, B. Benmammar
{"title":"基于OFDM认知无线电的仿生方法","authors":"N. A. Saoucha, B. Benmammar","doi":"10.1504/IJIPT.2019.10019368","DOIUrl":null,"url":null,"abstract":"Link adaptation algorithms design for OFDM-based cognitive radio networks is a challenging task. The main concern is to provide a high quality of service for the secondary user while the mutual interference between this last and the primary user persists within a tolerable range. This issue can be formulated as a multiobjective optimisation constraint problem. To tackle this optimisation problem in a multiobjective constraint framework, in this paper we exploit three of the most recent powerful bio-inspired algorithms: firefly, bat, and cuckoo search. Simulation results revealed that, in contrast to the classical genetic algorithm and particle swarm optimisation-based link adaptation, our proposed algorithms exhibit better performance in terms of convergence speed and solution quality with saving rates reaching over 98.93% and 46.60%, respectively.","PeriodicalId":42931,"journal":{"name":"International Journal of Internet Protocol Technology","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bio-inspired Approaches for OFDM Based Cognitive Radio\",\"authors\":\"N. A. Saoucha, B. Benmammar\",\"doi\":\"10.1504/IJIPT.2019.10019368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Link adaptation algorithms design for OFDM-based cognitive radio networks is a challenging task. The main concern is to provide a high quality of service for the secondary user while the mutual interference between this last and the primary user persists within a tolerable range. This issue can be formulated as a multiobjective optimisation constraint problem. To tackle this optimisation problem in a multiobjective constraint framework, in this paper we exploit three of the most recent powerful bio-inspired algorithms: firefly, bat, and cuckoo search. Simulation results revealed that, in contrast to the classical genetic algorithm and particle swarm optimisation-based link adaptation, our proposed algorithms exhibit better performance in terms of convergence speed and solution quality with saving rates reaching over 98.93% and 46.60%, respectively.\",\"PeriodicalId\":42931,\"journal\":{\"name\":\"International Journal of Internet Protocol Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Internet Protocol Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIPT.2019.10019368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Protocol Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIPT.2019.10019368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

基于OFDM的认知无线电网络的链路自适应算法设计是一项具有挑战性的任务。主要关注的是为第二用户提供高质量的服务,同时该最后用户和主要用户之间的相互干扰保持在可容忍的范围内。这个问题可以表述为一个多目标优化约束问题。为了在多目标约束框架中解决这个优化问题,在本文中,我们利用了三种最新的强大的生物启发算法:萤火虫、蝙蝠和杜鹃搜索。仿真结果表明,与经典的遗传算法和基于粒子群优化的链路自适应算法相比,我们提出的算法在收敛速度和求解质量方面表现出更好的性能,节约率分别达到98.93%和46.60%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired Approaches for OFDM Based Cognitive Radio
Link adaptation algorithms design for OFDM-based cognitive radio networks is a challenging task. The main concern is to provide a high quality of service for the secondary user while the mutual interference between this last and the primary user persists within a tolerable range. This issue can be formulated as a multiobjective optimisation constraint problem. To tackle this optimisation problem in a multiobjective constraint framework, in this paper we exploit three of the most recent powerful bio-inspired algorithms: firefly, bat, and cuckoo search. Simulation results revealed that, in contrast to the classical genetic algorithm and particle swarm optimisation-based link adaptation, our proposed algorithms exhibit better performance in terms of convergence speed and solution quality with saving rates reaching over 98.93% and 46.60%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Internet Protocol Technology
International Journal of Internet Protocol Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.10
自引率
0.00%
发文量
14
期刊介绍: The IJIPT provides an open forum for researchers, academics, engineers, network managers, and service providers in Internet Protocol Technology. Extensive exchange of information will be provided on new protocols, standards, services, and various applications in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信