类lipschitz区域中二维多时滞Navier-Stokes方程的动力学和鲁棒性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Keqin Su, Xinguang Yang, A. Miranville, He Yang
{"title":"类lipschitz区域中二维多时滞Navier-Stokes方程的动力学和鲁棒性","authors":"Keqin Su, Xinguang Yang, A. Miranville, He Yang","doi":"10.3233/asy-231845","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the dynamics of the two-dimensional Navier–Stokes equations with multi-delays in a Lipschitz-like domain, subject to inhomogeneous Dirichlet boundary conditions. The regularity of global solutions and of pullback attractors, based on tempered universes, is established, extending the results of Yang, Wang, Yan and Miranville (Discrete Contin. Dyn. Syst. 41 (2021) 3343–3366). Furthermore, the robustness of pullback attractors when the delays, considered as small perturbations, disappear is also derived. The key technique in the proofs is the application of a retarded Gronwall inequality and a variable index for the tempered pullback dynamics, allowing to obtain uniform estimates and the compactness of the process.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains\",\"authors\":\"Keqin Su, Xinguang Yang, A. Miranville, He Yang\",\"doi\":\"10.3233/asy-231845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the dynamics of the two-dimensional Navier–Stokes equations with multi-delays in a Lipschitz-like domain, subject to inhomogeneous Dirichlet boundary conditions. The regularity of global solutions and of pullback attractors, based on tempered universes, is established, extending the results of Yang, Wang, Yan and Miranville (Discrete Contin. Dyn. Syst. 41 (2021) 3343–3366). Furthermore, the robustness of pullback attractors when the delays, considered as small perturbations, disappear is also derived. The key technique in the proofs is the application of a retarded Gronwall inequality and a variable index for the tempered pullback dynamics, allowing to obtain uniform estimates and the compactness of the process.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231845\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231845","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究Lipschitz样域中的二维多时滞Navier-Stokes方程在非齐次Dirichlet边界条件下的动力学问题。在Yang,Wang,Yan和Miranville(Discrete Contin.Dyn.Syst.41(2021)3343–3366)的结果的基础上,建立了基于调和宇宙的全局解和回调吸引子的正则性。此外,还推导了当被认为是小扰动的延迟消失时,回调吸引子的鲁棒性。证明中的关键技术是应用延迟Gronwall不等式和调和回调动力学的可变指数,从而获得统一的估计和过程的紧致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains
This paper is concerned with the dynamics of the two-dimensional Navier–Stokes equations with multi-delays in a Lipschitz-like domain, subject to inhomogeneous Dirichlet boundary conditions. The regularity of global solutions and of pullback attractors, based on tempered universes, is established, extending the results of Yang, Wang, Yan and Miranville (Discrete Contin. Dyn. Syst. 41 (2021) 3343–3366). Furthermore, the robustness of pullback attractors when the delays, considered as small perturbations, disappear is also derived. The key technique in the proofs is the application of a retarded Gronwall inequality and a variable index for the tempered pullback dynamics, allowing to obtain uniform estimates and the compactness of the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信