线性回归模型的贝叶斯群选择方法综述

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Wei Lai, Ray‐Bing Chen
{"title":"线性回归模型的贝叶斯群选择方法综述","authors":"Wei Lai, Ray‐Bing Chen","doi":"10.1002/wics.1513","DOIUrl":null,"url":null,"abstract":"Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection approaches for linear regression models. We start from the Bayesian indicator approach and then move to the Bayesian group LASSO methods. In addition, we also consider the Bayesian methods for the sparse group selection that can be treated as an extension of the group selection. Finally, we mention some extensions of Bayesian group selection for the generalized linear models and the multiple response models.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1513","citationCount":"3","resultStr":"{\"title\":\"A review of Bayesian group selection approaches for linear regression models\",\"authors\":\"Wei Lai, Ray‐Bing Chen\",\"doi\":\"10.1002/wics.1513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection approaches for linear regression models. We start from the Bayesian indicator approach and then move to the Bayesian group LASSO methods. In addition, we also consider the Bayesian methods for the sparse group selection that can be treated as an extension of the group selection. Finally, we mention some extensions of Bayesian group selection for the generalized linear models and the multiple response models.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1513\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1513\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1513","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

分组选择在许多统计建模问题中自然产生。在过去的二十年里,已经提出了几种群体选择方法。在本文中,我们回顾了线性回归模型的贝叶斯群选择方法。我们从贝叶斯指标方法开始,然后转到贝叶斯组LASSO方法。此外,我们还考虑了稀疏群选择的贝叶斯方法,该方法可以被视为群选择的扩展。最后,我们提到了贝叶斯群选择对广义线性模型和多响应模型的一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of Bayesian group selection approaches for linear regression models
Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection approaches for linear regression models. We start from the Bayesian indicator approach and then move to the Bayesian group LASSO methods. In addition, we also consider the Bayesian methods for the sparse group selection that can be treated as an extension of the group selection. Finally, we mention some extensions of Bayesian group selection for the generalized linear models and the multiple response models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信