关于一个出现在均值不变问题边值上的函数方程

IF 0.4 Q4 MATHEMATICS
J. Jarczyk, W. Jarczyk
{"title":"关于一个出现在均值不变问题边值上的函数方程","authors":"J. Jarczyk, W. Jarczyk","doi":"10.2478/amsil-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),   x,y∈I. B_\\omega ^\\alpha \\left({x,y} \\right) = {\\alpha ^{- 1}}\\left({{{\\omega \\left(x \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(x \\right) + {{\\omega \\left(y \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(y \\right)} \\right),\\,\\,\\,x,y \\in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\\left(x \\right)B_s^\\varphi \\left({x,y} \\right) + r\\left(y \\right)B_t^\\psi \\left({x,y} \\right) = r\\left(x \\right)x + r\\left(y \\right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"103 - 96"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Functional Equation Appearing on the Margins of a Mean Invariance Problem\",\"authors\":\"J. Jarczyk, W. Jarczyk\",\"doi\":\"10.2478/amsil-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),   x,y∈I. B_\\\\omega ^\\\\alpha \\\\left({x,y} \\\\right) = {\\\\alpha ^{- 1}}\\\\left({{{\\\\omega \\\\left(x \\\\right)} \\\\over {\\\\omega \\\\left(x \\\\right) + \\\\omega \\\\left(y \\\\right)}}\\\\alpha \\\\left(x \\\\right) + {{\\\\omega \\\\left(y \\\\right)} \\\\over {\\\\omega \\\\left(x \\\\right) + \\\\omega \\\\left(y \\\\right)}}\\\\alpha \\\\left(y \\\\right)} \\\\right),\\\\,\\\\,\\\\,x,y \\\\in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\\\\left(x \\\\right)B_s^\\\\varphi \\\\left({x,y} \\\\right) + r\\\\left(y \\\\right)B_t^\\\\psi \\\\left({x,y} \\\\right) = r\\\\left(x \\\\right)x + r\\\\left(y \\\\right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"34 1\",\"pages\":\"103 - 96\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定在区间I上定义的连续严格单调实值函数α和函数ω:I→ (0,+∞)我们用Bαω表示由α生成并由ω加权的Bajraktarević均值:Bω,   x、 y∈I。B_\omega^\alpha\left({x,y}\right)={\alpha^{-1}}\left({{\omega\lift(x\right)}\over{\omega\left(x\right)+\omega\ left(y\right)}\over{omega\left。我们为函数方程r(x)Bs(x,y)+r(y)Btψ→ (0,+∞)是三次可微函数,φ,ψ和r的一阶导数不消失。然而,我们证明,并不是由所发现的公式给出的每对(φ,ψ)都满足上述方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Functional Equation Appearing on the Margins of a Mean Invariance Problem
Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),   x,y∈I. B_\omega ^\alpha \left({x,y} \right) = {\alpha ^{- 1}}\left({{{\omega \left(x \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(x \right) + {{\omega \left(y \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(y \right)} \right),\,\,\,x,y \in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\left(x \right)B_s^\varphi \left({x,y} \right) + r\left(y \right)B_t^\psi \left({x,y} \right) = r\left(x \right)x + r\left(y \right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信