Langevin方程的边值问题及Hilfer分数阶导数的包含

IF 1.4 Q2 MATHEMATICS, APPLIED
K. Hilal, A. Kajouni, Hamid Lmou
{"title":"Langevin方程的边值问题及Hilfer分数阶导数的包含","authors":"K. Hilal, A. Kajouni, Hamid Lmou","doi":"10.1155/2022/3386198","DOIUrl":null,"url":null,"abstract":"In this work, we discuss the existence and uniqueness of solution for a boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative. First of all, we give some definitions, theorems, and lemmas that are necessary for the understanding of the manuscript. Second of all, we give our first existence result, based on Krasnoselskii’s fixed point, and to deal with the uniqueness result, we use Banach’s contraction principle. Third of all, in the inclusion case, to obtain the existence result, we use the Leray–Schauder alternative. Last but not least, we give an illustrative example.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boundary Value Problem for the Langevin Equation and Inclusion with the Hilfer Fractional Derivative\",\"authors\":\"K. Hilal, A. Kajouni, Hamid Lmou\",\"doi\":\"10.1155/2022/3386198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we discuss the existence and uniqueness of solution for a boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative. First of all, we give some definitions, theorems, and lemmas that are necessary for the understanding of the manuscript. Second of all, we give our first existence result, based on Krasnoselskii’s fixed point, and to deal with the uniqueness result, we use Banach’s contraction principle. Third of all, in the inclusion case, to obtain the existence result, we use the Leray–Schauder alternative. Last but not least, we give an illustrative example.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3386198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3386198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一类Langevin方程边值问题解的存在唯一性,以及包含Hilfer分数阶导数。首先,我们给出了理解手稿所必需的一些定义、定理和引理。其次,我们给出了基于Krasnoselskii不动点的第一个存在性结果,并利用Banach的收缩原理处理唯一性结果。第三,在包含情况下,为了得到存在性结果,我们使用了Leray-Schauder替代。最后但并非最不重要的是,我们给出一个说明性的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Value Problem for the Langevin Equation and Inclusion with the Hilfer Fractional Derivative
In this work, we discuss the existence and uniqueness of solution for a boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative. First of all, we give some definitions, theorems, and lemmas that are necessary for the understanding of the manuscript. Second of all, we give our first existence result, based on Krasnoselskii’s fixed point, and to deal with the uniqueness result, we use Banach’s contraction principle. Third of all, in the inclusion case, to obtain the existence result, we use the Leray–Schauder alternative. Last but not least, we give an illustrative example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信