散度损失函数下矩阵变量正态分布均值矩阵的极大极小估计

IF 1.6 Q1 STATISTICS & PROBABILITY
S. Zinodiny, Sadegh Rezaei, S. Nadarajah
{"title":"散度损失函数下矩阵变量正态分布均值矩阵的极大极小估计","authors":"S. Zinodiny, Sadegh Rezaei, S. Nadarajah","doi":"10.6092/ISSN.1973-2201/6956","DOIUrl":null,"url":null,"abstract":"The problem of estimating the mean matrix of a matrix-variate normal distribution with a covariance matrix is considered under two loss functions. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function and hence show that the maximum likelihood estimator is inadmissible. We find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function and hence show that the maximum likelihood estimator is inadmissible.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"77 1","pages":"369-384"},"PeriodicalIF":1.6000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimax Estimation of the Mean Matrix of the Matrix Variate Normal Distribution under the Divergence Loss Function\",\"authors\":\"S. Zinodiny, Sadegh Rezaei, S. Nadarajah\",\"doi\":\"10.6092/ISSN.1973-2201/6956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating the mean matrix of a matrix-variate normal distribution with a covariance matrix is considered under two loss functions. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function and hence show that the maximum likelihood estimator is inadmissible. We find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function and hence show that the maximum likelihood estimator is inadmissible.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"77 1\",\"pages\":\"369-384\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/6956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

研究了在两种损失函数下用协方差矩阵估计矩阵变量正态分布的平均矩阵的问题。构造了一类在第一损失函数下优于极大似然估计的经验贝叶斯估计,从而证明了极大似然估计是不可容许的。我们找到了一类一般的极大极小估计。在二阶损失函数下,我们给出了一类改进极大似然估计的估计,从而证明了极大似然估计是不可容许的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax Estimation of the Mean Matrix of the Matrix Variate Normal Distribution under the Divergence Loss Function
The problem of estimating the mean matrix of a matrix-variate normal distribution with a covariance matrix is considered under two loss functions. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function and hence show that the maximum likelihood estimator is inadmissible. We find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function and hence show that the maximum likelihood estimator is inadmissible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信