齐格蒙空间轨迹的双星定理

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Brudnyi
{"title":"齐格蒙空间轨迹的双星定理","authors":"A. Brudnyi","doi":"10.1090/spmj/1744","DOIUrl":null,"url":null,"abstract":"<p>For a Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defined in terms of a big-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O\">\n <mml:semantics>\n <mml:mi>O</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">O</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> condition and its subspace <italic>x</italic> defined by the corresponding little-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o\">\n <mml:semantics>\n <mml:mi>o</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">o</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of <italic>x</italic> is naturally isometrically isomorphic to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The property is known for pairs of many classical function spaces (such as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis script l Subscript normal infinity Baseline comma c 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\ell _\\infty , c_0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, (BMO, VMO), (Lip, lip), etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S\\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a generalized Zygmund space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>Z</mml:mi>\n <mml:mi>ω<!-- ω --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z^\\omega (\\mathbb {R}^n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis vertical-bar Subscript upper S Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>Z</mml:mi>\n <mml:mi>ω<!-- ω --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z^\\omega (\\mathbb {R}^n)|_S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two stars theorems for traces of the Zygmund space\",\"authors\":\"A. Brudnyi\",\"doi\":\"10.1090/spmj/1744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a Banach space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> defined in terms of a big-<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O\\\">\\n <mml:semantics>\\n <mml:mi>O</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> condition and its subspace <italic>x</italic> defined by the corresponding little-<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"o\\\">\\n <mml:semantics>\\n <mml:mi>o</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">o</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of <italic>x</italic> is naturally isometrically isomorphic to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The property is known for pairs of many classical function spaces (such as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis script l Subscript normal infinity Baseline comma c 0 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\ell _\\\\infty , c_0)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, (BMO, VMO), (Lip, lip), etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S subset-of double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>S</mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S\\\\subset \\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of a generalized Zygmund space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>Z</mml:mi>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z^\\\\omega (\\\\mathbb {R}^n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis vertical-bar Subscript upper S Baseline\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>Z</mml:mi>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>S</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z^\\\\omega (\\\\mathbb {R}^n)|_S</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1744\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1744","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于由大0条件定义的巴拿赫空间X X及其由相应的小0条件定义的子空间X,其对偶性质(推广自反性概念)断言X的对偶与X X自然是等距同构的。这一性质在许多经典函数空间对(如(r∞,c 0) (\ell _ \infty, c_0), (BMO, VMO), (Lip, Lip)等)中都是已知的,在研究它们的几何结构中起着重要作用。本文研究广义Zygmund空间Z ω (rn) Z^ \omega (\mathbb R{^n)的闭子集S∧R n S }\subset\mathbb R{^n的迹的对偶性。证明方法是基于对迹空间的几何预公数结构的仔细分析,以及迹空间Z ω (R n)| S Z^ }\omega (\mathbb R{^n)|_S的一个强有力的有限性定理。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two stars theorems for traces of the Zygmund space

For a Banach space X X defined in terms of a big- O O condition and its subspace x defined by the corresponding little- o o condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of x is naturally isometrically isomorphic to X X . The property is known for pairs of many classical function spaces (such as ( , c 0 ) (\ell _\infty , c_0) , (BMO, VMO), (Lip, lip), etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets S R n S\subset \mathbb {R}^n of a generalized Zygmund space Z ω ( R n ) Z^\omega (\mathbb {R}^n) . The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces Z ω ( R n ) | S Z^\omega (\mathbb {R}^n)|_S .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信