诱导半群代数的第一模上同调群

IF 0.4 Q4 MATHEMATICS
M. Miri, E. Nasrabadi, Kianoush Kazemi
{"title":"诱导半群代数的第一模上同调群","authors":"M. Miri, E. Nasrabadi, Kianoush Kazemi","doi":"10.5269/bspm.51414","DOIUrl":null,"url":null,"abstract":"‎Let $S$ be a discrete semigroup and $T$ be a left multiplier operator on $S$‎. ‎A new product on $S$ defined by $T$ creates a new induced semigroup $S _{T} $‎. ‎In this paper‎, ‎we show that if $T$ is bijective‎, ‎then the first module cohomology groups $ \\HH_{\\ell^1(E)}^{1}(\\ell^1(S)‎, ‎\\ell^{\\infty}(S))$ and $ \\HH_{\\ell^1(E_{T})}^{1}(\\ell^1({S_{T}})‎, ‎\\ell^{\\infty}(S_{T})) $ are equal‎, ‎where $E$ and $E_{T}$ are sets of idempotent elements in $S$ and $S _{T}$‎, ‎respectively‎. ‎Which in particular means that $\\ell^1(S)$ is weak $\\ell^1(E)$-module amenable if and only if $\\ell^1(S_T)$ is weak $\\ell^1(E_T)$-module amenable‎. ‎Finally‎, ‎by giving an example‎, ‎we show that the condition of bijectivity for $T$‎, ‎is necessary‎.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First module cohomology group of induced semigroup algebras\",\"authors\":\"M. Miri, E. Nasrabadi, Kianoush Kazemi\",\"doi\":\"10.5269/bspm.51414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎Let $S$ be a discrete semigroup and $T$ be a left multiplier operator on $S$‎. ‎A new product on $S$ defined by $T$ creates a new induced semigroup $S _{T} $‎. ‎In this paper‎, ‎we show that if $T$ is bijective‎, ‎then the first module cohomology groups $ \\\\HH_{\\\\ell^1(E)}^{1}(\\\\ell^1(S)‎, ‎\\\\ell^{\\\\infty}(S))$ and $ \\\\HH_{\\\\ell^1(E_{T})}^{1}(\\\\ell^1({S_{T}})‎, ‎\\\\ell^{\\\\infty}(S_{T})) $ are equal‎, ‎where $E$ and $E_{T}$ are sets of idempotent elements in $S$ and $S _{T}$‎, ‎respectively‎. ‎Which in particular means that $\\\\ell^1(S)$ is weak $\\\\ell^1(E)$-module amenable if and only if $\\\\ell^1(S_T)$ is weak $\\\\ell^1(E_T)$-module amenable‎. ‎Finally‎, ‎by giving an example‎, ‎we show that the condition of bijectivity for $T$‎, ‎is necessary‎.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$S$为离散半群,$T$为$S$上的左乘子算子。在$S$上由$T$定义的一个新产品创建了一个新的诱导半群$S _{T} $。在本文中,我们证明了如果$T$是双射,那么第一模上同群$ \HH_{\ell^1(E)}^{1}(\ell^1(S)‎, ‎\ell^{\infty}(S))$和$ \HH_{\ell^1(E_{T})}^{1}(\ell^1({S_{T}})‎, ‎\ell^{\infty}(S_{T})) $是相等的,其中$E$和$E_{T}$分别是$S$和$S _{T}$中幂等元的集合。这特别意味着$\ell^1(S)$是弱的$\ell^1(E)$ -模块可接受的当且仅当$\ell^1(S_T)$是弱的$\ell^1(E_T)$ -模块可接受。最后,通过一个例子,我们证明了$T$的双射性条件是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First module cohomology group of induced semigroup algebras
‎Let $S$ be a discrete semigroup and $T$ be a left multiplier operator on $S$‎. ‎A new product on $S$ defined by $T$ creates a new induced semigroup $S _{T} $‎. ‎In this paper‎, ‎we show that if $T$ is bijective‎, ‎then the first module cohomology groups $ \HH_{\ell^1(E)}^{1}(\ell^1(S)‎, ‎\ell^{\infty}(S))$ and $ \HH_{\ell^1(E_{T})}^{1}(\ell^1({S_{T}})‎, ‎\ell^{\infty}(S_{T})) $ are equal‎, ‎where $E$ and $E_{T}$ are sets of idempotent elements in $S$ and $S _{T}$‎, ‎respectively‎. ‎Which in particular means that $\ell^1(S)$ is weak $\ell^1(E)$-module amenable if and only if $\ell^1(S_T)$ is weak $\ell^1(E_T)$-module amenable‎. ‎Finally‎, ‎by giving an example‎, ‎we show that the condition of bijectivity for $T$‎, ‎is necessary‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信