{"title":"DTMB4119船用螺旋桨在不同推进系数下的水声噪声分析","authors":"E. Yari, Mohammad Reza Nateghi (MD, MPH)","doi":"10.1080/20464177.2023.2233274","DOIUrl":null,"url":null,"abstract":"Investigating the Hydro-acoustic behaviour and noise of marine propellers is very important, especially in underwater vessels and submarines. The present study aims to numerically model the hydrodynamic noise of a benchmark marine propeller using the computational fluid dynamics method based on the finite volume method under open water conditions. The DES turbulence model is used in the numerical simulation, which is a good model for modelling small eddies near the wall and covers the advantages of both LES and RANS models. To increase the accuracy of the numerical solution, a finer grid has been used on the blades tips, hub, and boss. According to the investigations, time step independence occurs for 0.001 s. In the following, the numerical analysis of the hydrodynamic noise of the DTMB4119 propeller has been extracted at the advance coefficients of 0.5–1.1 and distances of 1D to 10D from the propeller in the axial directions and perpendicular to the fluid flow. Based on the obtained results, the highest level of noise emission in the flow direction is related to low frequencies, and with the increase in frequency and distance from the noise source, the emitted noise level decreases. Increasing the distance from the noise source from 1D to 10D decreases the emitted noise level by 40 dB. For every 0.1 reduction in the advance coefficient, 10 dB is added to the noise emission level in the axial direction.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"248 - 261"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydro-acoustic and noise analysis of DTMB4119 marine propeller at different advance coefficients using DES turbulence model\",\"authors\":\"E. Yari, Mohammad Reza Nateghi (MD, MPH)\",\"doi\":\"10.1080/20464177.2023.2233274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating the Hydro-acoustic behaviour and noise of marine propellers is very important, especially in underwater vessels and submarines. The present study aims to numerically model the hydrodynamic noise of a benchmark marine propeller using the computational fluid dynamics method based on the finite volume method under open water conditions. The DES turbulence model is used in the numerical simulation, which is a good model for modelling small eddies near the wall and covers the advantages of both LES and RANS models. To increase the accuracy of the numerical solution, a finer grid has been used on the blades tips, hub, and boss. According to the investigations, time step independence occurs for 0.001 s. In the following, the numerical analysis of the hydrodynamic noise of the DTMB4119 propeller has been extracted at the advance coefficients of 0.5–1.1 and distances of 1D to 10D from the propeller in the axial directions and perpendicular to the fluid flow. Based on the obtained results, the highest level of noise emission in the flow direction is related to low frequencies, and with the increase in frequency and distance from the noise source, the emitted noise level decreases. Increasing the distance from the noise source from 1D to 10D decreases the emitted noise level by 40 dB. For every 0.1 reduction in the advance coefficient, 10 dB is added to the noise emission level in the axial direction.\",\"PeriodicalId\":50152,\"journal\":{\"name\":\"Journal of Marine Engineering and Technology\",\"volume\":\"22 1\",\"pages\":\"248 - 261\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/20464177.2023.2233274\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2023.2233274","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Hydro-acoustic and noise analysis of DTMB4119 marine propeller at different advance coefficients using DES turbulence model
Investigating the Hydro-acoustic behaviour and noise of marine propellers is very important, especially in underwater vessels and submarines. The present study aims to numerically model the hydrodynamic noise of a benchmark marine propeller using the computational fluid dynamics method based on the finite volume method under open water conditions. The DES turbulence model is used in the numerical simulation, which is a good model for modelling small eddies near the wall and covers the advantages of both LES and RANS models. To increase the accuracy of the numerical solution, a finer grid has been used on the blades tips, hub, and boss. According to the investigations, time step independence occurs for 0.001 s. In the following, the numerical analysis of the hydrodynamic noise of the DTMB4119 propeller has been extracted at the advance coefficients of 0.5–1.1 and distances of 1D to 10D from the propeller in the axial directions and perpendicular to the fluid flow. Based on the obtained results, the highest level of noise emission in the flow direction is related to low frequencies, and with the increase in frequency and distance from the noise source, the emitted noise level decreases. Increasing the distance from the noise source from 1D to 10D decreases the emitted noise level by 40 dB. For every 0.1 reduction in the advance coefficient, 10 dB is added to the noise emission level in the axial direction.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.