{"title":"改进协方差定位以减小集成数据同化带来的采样误差","authors":"Mingheng Chang, H. Zuo, Jikai Duan","doi":"10.1155/2022/6101721","DOIUrl":null,"url":null,"abstract":"The ensemble-based Kalman filter requires at least a considerable ensemble (e.g., 10,000 members) to identify relevant error covariance at great distances for multidimensional geophysical systems. However, increasing numerous ensemble sizes will enlarge sampling errors. This study proposes a modified Cholesky decomposition based on the covariance localization (CL) scheme, namely a covariance localization scheme with modified Cholesky decomposition (CL-MC). Our main idea utilizes a modified Cholesky (MC) decomposition technique for estimating the background error covariance matrix; meanwhile, we employ the tunable singular value decomposition method on the background error covariance to improve the ensemble increment and avoid the imbalance of the system. To verify if the proposed method can effectively mitigate the sampling errors, numerical experiments are conducted on the Lorenz-96 model and large-scale model (SPEEDY model). The results show that the CL-MC method outperforms the CL method for different data assimilation parameters (ensemble sizes and localizations). Furthermore, by performing one year of assimilation experiments on the SPEEDY model, it is found that the 1-day forecast RMSEs obtained by the CL are approximately equal to the 5-day forecast RMSEs of CL-MC. So, the CL-MC method has potential advantages for long-term forecasting. Maybe the proposed CL-MC method achieves good prospects for widespread application in atmospheric general circulation models.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifying Covariance Localization to Mitigate Sampling Errors from the Ensemble Data Assimilation\",\"authors\":\"Mingheng Chang, H. Zuo, Jikai Duan\",\"doi\":\"10.1155/2022/6101721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ensemble-based Kalman filter requires at least a considerable ensemble (e.g., 10,000 members) to identify relevant error covariance at great distances for multidimensional geophysical systems. However, increasing numerous ensemble sizes will enlarge sampling errors. This study proposes a modified Cholesky decomposition based on the covariance localization (CL) scheme, namely a covariance localization scheme with modified Cholesky decomposition (CL-MC). Our main idea utilizes a modified Cholesky (MC) decomposition technique for estimating the background error covariance matrix; meanwhile, we employ the tunable singular value decomposition method on the background error covariance to improve the ensemble increment and avoid the imbalance of the system. To verify if the proposed method can effectively mitigate the sampling errors, numerical experiments are conducted on the Lorenz-96 model and large-scale model (SPEEDY model). The results show that the CL-MC method outperforms the CL method for different data assimilation parameters (ensemble sizes and localizations). Furthermore, by performing one year of assimilation experiments on the SPEEDY model, it is found that the 1-day forecast RMSEs obtained by the CL are approximately equal to the 5-day forecast RMSEs of CL-MC. So, the CL-MC method has potential advantages for long-term forecasting. Maybe the proposed CL-MC method achieves good prospects for widespread application in atmospheric general circulation models.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6101721\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/6101721","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Modifying Covariance Localization to Mitigate Sampling Errors from the Ensemble Data Assimilation
The ensemble-based Kalman filter requires at least a considerable ensemble (e.g., 10,000 members) to identify relevant error covariance at great distances for multidimensional geophysical systems. However, increasing numerous ensemble sizes will enlarge sampling errors. This study proposes a modified Cholesky decomposition based on the covariance localization (CL) scheme, namely a covariance localization scheme with modified Cholesky decomposition (CL-MC). Our main idea utilizes a modified Cholesky (MC) decomposition technique for estimating the background error covariance matrix; meanwhile, we employ the tunable singular value decomposition method on the background error covariance to improve the ensemble increment and avoid the imbalance of the system. To verify if the proposed method can effectively mitigate the sampling errors, numerical experiments are conducted on the Lorenz-96 model and large-scale model (SPEEDY model). The results show that the CL-MC method outperforms the CL method for different data assimilation parameters (ensemble sizes and localizations). Furthermore, by performing one year of assimilation experiments on the SPEEDY model, it is found that the 1-day forecast RMSEs obtained by the CL are approximately equal to the 5-day forecast RMSEs of CL-MC. So, the CL-MC method has potential advantages for long-term forecasting. Maybe the proposed CL-MC method achieves good prospects for widespread application in atmospheric general circulation models.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.