非局部方程中的ODE方法

IF 0.8 4区 数学
Weiwei Ao, Hardy Chan, A. DelaTorre, M. Fontelos, Mar'ia de Mar Gonz'alez, Juncheng Wei
{"title":"非局部方程中的ODE方法","authors":"Weiwei Ao, Hardy Chan, A. DelaTorre, M. Fontelos, Mar'ia de Mar Gonz'alez, Juncheng Wei","doi":"10.4208/jms.v53n4.20.01","DOIUrl":null,"url":null,"abstract":"Non-local equations cannot be treated using classical ODE theorems. Nevertheless, several new methods have been introduced in the non-local gluing scheme of our previous article \"On higher dimensional singularities for the fractional Yamabe problem: a non-local Mazzeo-Pacard program\"; we survey and improve those, and present new applications as well. First, from the explicit symbol of the conformal fractional Laplacian, a variation of constants formula is obtained for fractional Hardy operators. We thus develop, in addition to a suitable extension in the spirit of Caffarelli--Silvestre, an equivalent formulation as an infinite system of second order constant coefficient ODEs. Classical ODE quantities like the Hamiltonian and Wronskian may then be utilized. As applications, we obtain a Frobenius theorem and establish new Poho\\vzaev identities. We also give a detailed proof for the non-degeneracy of the fast-decay singular solution of the fractional Lane-Emden equation.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ODE Methods in Non-Local Equations\",\"authors\":\"Weiwei Ao, Hardy Chan, A. DelaTorre, M. Fontelos, Mar'ia de Mar Gonz'alez, Juncheng Wei\",\"doi\":\"10.4208/jms.v53n4.20.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-local equations cannot be treated using classical ODE theorems. Nevertheless, several new methods have been introduced in the non-local gluing scheme of our previous article \\\"On higher dimensional singularities for the fractional Yamabe problem: a non-local Mazzeo-Pacard program\\\"; we survey and improve those, and present new applications as well. First, from the explicit symbol of the conformal fractional Laplacian, a variation of constants formula is obtained for fractional Hardy operators. We thus develop, in addition to a suitable extension in the spirit of Caffarelli--Silvestre, an equivalent formulation as an infinite system of second order constant coefficient ODEs. Classical ODE quantities like the Hamiltonian and Wronskian may then be utilized. As applications, we obtain a Frobenius theorem and establish new Poho\\\\vzaev identities. We also give a detailed proof for the non-degeneracy of the fast-decay singular solution of the fractional Lane-Emden equation.\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n4.20.01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n4.20.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

非局部方程不能用经典的ODE定理来处理。然而,在我们上一篇文章“关于分数Yamabe问题的高维奇点:一个非局部Mazzeo-Pacard程序”的非局部胶合方案中,已经引入了几种新的方法;我们对这些进行了调查和改进,并提出了新的应用程序。首先,从保角分式拉普拉斯算子的显式符号出发,得到了分式Hardy算子的常数变分公式。因此,除了按照Caffarelli-Silvestre的精神进行适当的扩展外,我们还开发了一个等效公式,作为二阶常系数常微分方程的无限系统。然后可以使用经典的ODE量,如哈密顿量和弗罗斯基量。作为应用,我们得到了一个Frobenius定理,并建立了新的Poho\vzaev恒等式。我们还详细地证明了分数Lane-Emden方程的快速衰变奇异解的非退化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ODE Methods in Non-Local Equations
Non-local equations cannot be treated using classical ODE theorems. Nevertheless, several new methods have been introduced in the non-local gluing scheme of our previous article "On higher dimensional singularities for the fractional Yamabe problem: a non-local Mazzeo-Pacard program"; we survey and improve those, and present new applications as well. First, from the explicit symbol of the conformal fractional Laplacian, a variation of constants formula is obtained for fractional Hardy operators. We thus develop, in addition to a suitable extension in the spirit of Caffarelli--Silvestre, an equivalent formulation as an infinite system of second order constant coefficient ODEs. Classical ODE quantities like the Hamiltonian and Wronskian may then be utilized. As applications, we obtain a Frobenius theorem and establish new Poho\vzaev identities. We also give a detailed proof for the non-degeneracy of the fast-decay singular solution of the fractional Lane-Emden equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信