{"title":"亚临界流动状态下非圆形圆柱的气动噪声特性","authors":"Arun Mg, S. Tj","doi":"10.1177/1475472X221140869","DOIUrl":null,"url":null,"abstract":"The present study experimentally investigates the aerodynamic noise from the flow around cylinders of square and equilateral triangle cross-sections at different angles of incidence (α). The cylinder models have a side dimension of 10 mm and a span of 300 mm. The free stream velocity (U 0 ) is in the range of 12–36 m/s, and the corresponding Reynolds numbers are 7.8 × 103 to 2.3 × 104, which is in the subcritical flow regime. The characteristic acoustic tones are generated at α = 30° and 45° for square and triangular cylinders. The frequency of acoustic tones linearly increases with the free stream velocity, and the corresponding Strouhal numbers are found to be in the range of 0.13–0.16. Depending on the angle of incidence, the overall sound pressure level is higher than the background noise by 4–24 dB for the square cylinder and 3–15 dB for the triangular cylinder at U 0 = 36 m/s. The highest noise level of the square cylinder is 90 dB at α = 45° and 79 dB at α = 30° for the triangular cylinder. The spectral scaling with the sixth power of the free stream velocity indicates the dipole behaviour of the acoustic tones. The mean and root-mean-square velocity profiles in the wake region characterise the noise emissions at different angles of incidence. The comparative acoustic study of the non-circular cylinders with a circular counterpart showed that the highest noise level is from the square cylinder at α = 45°. The directivity study shows that the noise level of the square cylinder at α = 45° at 90° angular location (θ) is higher by 6.5 dB than that at θ = 30°.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"766 - 792"},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic noise characteristics of non-circular cylinders in subcritical flow regime\",\"authors\":\"Arun Mg, S. Tj\",\"doi\":\"10.1177/1475472X221140869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study experimentally investigates the aerodynamic noise from the flow around cylinders of square and equilateral triangle cross-sections at different angles of incidence (α). The cylinder models have a side dimension of 10 mm and a span of 300 mm. The free stream velocity (U 0 ) is in the range of 12–36 m/s, and the corresponding Reynolds numbers are 7.8 × 103 to 2.3 × 104, which is in the subcritical flow regime. The characteristic acoustic tones are generated at α = 30° and 45° for square and triangular cylinders. The frequency of acoustic tones linearly increases with the free stream velocity, and the corresponding Strouhal numbers are found to be in the range of 0.13–0.16. Depending on the angle of incidence, the overall sound pressure level is higher than the background noise by 4–24 dB for the square cylinder and 3–15 dB for the triangular cylinder at U 0 = 36 m/s. The highest noise level of the square cylinder is 90 dB at α = 45° and 79 dB at α = 30° for the triangular cylinder. The spectral scaling with the sixth power of the free stream velocity indicates the dipole behaviour of the acoustic tones. The mean and root-mean-square velocity profiles in the wake region characterise the noise emissions at different angles of incidence. The comparative acoustic study of the non-circular cylinders with a circular counterpart showed that the highest noise level is from the square cylinder at α = 45°. The directivity study shows that the noise level of the square cylinder at α = 45° at 90° angular location (θ) is higher by 6.5 dB than that at θ = 30°.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"21 1\",\"pages\":\"766 - 792\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221140869\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221140869","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Aerodynamic noise characteristics of non-circular cylinders in subcritical flow regime
The present study experimentally investigates the aerodynamic noise from the flow around cylinders of square and equilateral triangle cross-sections at different angles of incidence (α). The cylinder models have a side dimension of 10 mm and a span of 300 mm. The free stream velocity (U 0 ) is in the range of 12–36 m/s, and the corresponding Reynolds numbers are 7.8 × 103 to 2.3 × 104, which is in the subcritical flow regime. The characteristic acoustic tones are generated at α = 30° and 45° for square and triangular cylinders. The frequency of acoustic tones linearly increases with the free stream velocity, and the corresponding Strouhal numbers are found to be in the range of 0.13–0.16. Depending on the angle of incidence, the overall sound pressure level is higher than the background noise by 4–24 dB for the square cylinder and 3–15 dB for the triangular cylinder at U 0 = 36 m/s. The highest noise level of the square cylinder is 90 dB at α = 45° and 79 dB at α = 30° for the triangular cylinder. The spectral scaling with the sixth power of the free stream velocity indicates the dipole behaviour of the acoustic tones. The mean and root-mean-square velocity profiles in the wake region characterise the noise emissions at different angles of incidence. The comparative acoustic study of the non-circular cylinders with a circular counterpart showed that the highest noise level is from the square cylinder at α = 45°. The directivity study shows that the noise level of the square cylinder at α = 45° at 90° angular location (θ) is higher by 6.5 dB than that at θ = 30°.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.