Meloni Gr, A. Farran, B. Mohanraj, H. Guehring, R. Cocca, E. Rabut, R. Mauck, G. R. Dodge
{"title":"重组人FGF18在关节软骨中保持深度依赖性的机械不均匀性。","authors":"Meloni Gr, A. Farran, B. Mohanraj, H. Guehring, R. Cocca, E. Rabut, R. Mauck, G. R. Dodge","doi":"10.22203/eCM.v038a03","DOIUrl":null,"url":null,"abstract":"Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"23-34"},"PeriodicalIF":3.2000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage.\",\"authors\":\"Meloni Gr, A. Farran, B. Mohanraj, H. Guehring, R. Cocca, E. Rabut, R. Mauck, G. R. Dodge\",\"doi\":\"10.22203/eCM.v038a03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\"38 1\",\"pages\":\"23-34\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v038a03\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v038a03","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage.
Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.