推断集体动力中的定向相互作用:对内在相互信息的批判

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pietro De Lellis, Manuel Ruiz Marín, M. Porfiri
{"title":"推断集体动力中的定向相互作用:对内在相互信息的批判","authors":"Pietro De Lellis, Manuel Ruiz Marín, M. Porfiri","doi":"10.1088/2632-072X/acace0","DOIUrl":null,"url":null,"abstract":"Pairwise interactions are critical to collective dynamics of natural and technological systems. Information theory is the gold standard to study these interactions, but recent work has identified pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual information and transfer entropy. These pitfalls have prompted the introduction of intrinsic mutual information to precisely measure information flow. However, little is known regarding the potential use of intrinsic mutual information in the inference of directional influences to diagnose interactions from time-series of individual units. We explore this possibility within a minimalistic, mathematically tractable leader–follower model, for which we document an excess of false inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection of the null-hypothesis of independence.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring directional interactions in collective dynamics: a critique to intrinsic mutual information\",\"authors\":\"Pietro De Lellis, Manuel Ruiz Marín, M. Porfiri\",\"doi\":\"10.1088/2632-072X/acace0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise interactions are critical to collective dynamics of natural and technological systems. Information theory is the gold standard to study these interactions, but recent work has identified pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual information and transfer entropy. These pitfalls have prompted the introduction of intrinsic mutual information to precisely measure information flow. However, little is known regarding the potential use of intrinsic mutual information in the inference of directional influences to diagnose interactions from time-series of individual units. We explore this possibility within a minimalistic, mathematically tractable leader–follower model, for which we document an excess of false inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection of the null-hypothesis of independence.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072X/acace0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acace0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

成对的相互作用对自然和技术系统的集体动力学至关重要。信息论是研究这些相互作用的黄金标准,但最近的工作已经发现,通过经典指标——时延互信息和传递熵——来评估信息流的方式存在缺陷。这些陷阱促使引入了内在的相互信息来精确测量信息流。然而,关于内在互信息在推断方向影响中的潜在用途,从单个单元的时间序列诊断相互作用,目前知之甚少。我们在一个最小化的、数学上易于处理的领导者-追随者模型中探索了这种可能性,对于该模型,与传递熵相比,我们记录了过多的内在互信息的错误推断。这一意外发现与内在互信息的一个基本限制有关,内在互信息也受到时间延迟互信息的影响:零分布的细尾有利于拒绝独立的零假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring directional interactions in collective dynamics: a critique to intrinsic mutual information
Pairwise interactions are critical to collective dynamics of natural and technological systems. Information theory is the gold standard to study these interactions, but recent work has identified pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual information and transfer entropy. These pitfalls have prompted the introduction of intrinsic mutual information to precisely measure information flow. However, little is known regarding the potential use of intrinsic mutual information in the inference of directional influences to diagnose interactions from time-series of individual units. We explore this possibility within a minimalistic, mathematically tractable leader–follower model, for which we document an excess of false inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection of the null-hypothesis of independence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信