脊回归方法在具有重复数据的线性测量误差模型中的性能

IF 0.4 Q4 MATHEMATICS
Abdol Rasoul Ziaei, K. Zare, Ayoub Sheikhi
{"title":"脊回归方法在具有重复数据的线性测量误差模型中的性能","authors":"Abdol Rasoul Ziaei, K. Zare, Ayoub Sheikhi","doi":"10.30495/JME.V0I0.1581","DOIUrl":null,"url":null,"abstract":"It is well known that bias in parameter estimates arises when there are measurement errors in the covariates of regression mod- els. One solution for decreasing such biases is the use of prior informa- tion concerning the measurement error, which is often called replication data. In this paper, we present a ridge estimator in replicated measure- ment error (RMER) to overcome the multicollinearity problem in such models. The performance of RMER against some other estimators is investigated. Large sample properties of our estimator are derived and compared with other estimators using a simulation study as well as a real data set.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Ridge Regression Approach in Linear Measurement Error Models with Replicated Data\",\"authors\":\"Abdol Rasoul Ziaei, K. Zare, Ayoub Sheikhi\",\"doi\":\"10.30495/JME.V0I0.1581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that bias in parameter estimates arises when there are measurement errors in the covariates of regression mod- els. One solution for decreasing such biases is the use of prior informa- tion concerning the measurement error, which is often called replication data. In this paper, we present a ridge estimator in replicated measure- ment error (RMER) to overcome the multicollinearity problem in such models. The performance of RMER against some other estimators is investigated. Large sample properties of our estimator are derived and compared with other estimators using a simulation study as well as a real data set.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,当回归模型的协变量中存在测量误差时,参数估计中会出现偏差。减少这种偏差的一种解决方案是使用与测量误差有关的先验信息,通常称为复制数据。在本文中,我们提出了一个重复测量误差(RMER)中的岭估计量,以克服此类模型中的多重共线性问题。研究了RMER相对于其他一些估计量的性能。通过模拟研究和实际数据集,推导了我们估计量的大样本性质,并与其他估计量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Ridge Regression Approach in Linear Measurement Error Models with Replicated Data
It is well known that bias in parameter estimates arises when there are measurement errors in the covariates of regression mod- els. One solution for decreasing such biases is the use of prior informa- tion concerning the measurement error, which is often called replication data. In this paper, we present a ridge estimator in replicated measure- ment error (RMER) to overcome the multicollinearity problem in such models. The performance of RMER against some other estimators is investigated. Large sample properties of our estimator are derived and compared with other estimators using a simulation study as well as a real data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信