三维可压缩非等温向列液晶流动的固定解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Wanchen Cui, H. Cai
{"title":"三维可压缩非等温向列液晶流动的固定解","authors":"Wanchen Cui, H. Cai","doi":"10.1155/2022/4695308","DOIUrl":null,"url":null,"abstract":"In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness of strong solution around the constant state in some suitable function space.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows\",\"authors\":\"Wanchen Cui, H. Cai\",\"doi\":\"10.1155/2022/4695308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness of strong solution around the constant state in some suitable function space.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4695308\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/4695308","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维空间中一般形式外力作用下的静态可压缩非等温向列液晶流动。利用收缩映射原理,证明了在合适的函数空间中围绕常态强解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows
In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness of strong solution around the constant state in some suitable function space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信