Zahira Mohamed Seghir, M. Djennad, R. Schomäcker, M. R. Ghezzar
{"title":"铌镧促进钨氧化锆酸性催化剂上正丁烷异构化的研究:正丁烷异构化活性","authors":"Zahira Mohamed Seghir, M. Djennad, R. Schomäcker, M. R. Ghezzar","doi":"10.15255/kui.2021.078","DOIUrl":null,"url":null,"abstract":"The requirement for environmentally friendly catalysts for the isomerization of alkanes has prompted research on the tung - state-zirconia (WZ) system. The present work examines the activity and selectivity of lanthanum (La) promoted tungstate-zir conia (LWZ) and niobium (Nb) promoted tungstate-zirconia (NWZ) catalysts. In this study, 1 % La promoted WZ (1 % LWZ) and 1 % Nb promoted WZ (1 % NWZ) catalysts were investigated in isomerization of n -butane in the presence of hydrogen. The studied catalysts were characterized by different methods: nitrogen physisorption, temperature programmed desorption of NH 3 , thermogravimetric analysis, and X-ray diffraction. The catalytic activity and selectivity were significantly improved by the addition of 1 % Nb. The redox process in the Nb-containing catalyst (1 % NWZ) played a central role by providing the highest acidic sites (283.53 µmol g −1 ) with appropriate activation energies for the skeletal rearrangement of the reactant ( n -butane). Furthermore, this study highlights the determining role of the transfer process of adsorbed species from ZrO 2 to W as well as to the Nb environment. The conversion of n -butane (27.34 %) and the selectivity to i -butane (92.34 %) for NWZ were signif icantly higher than WZ and LWZ catalysts. The experimental results revealed that Nb was a more effective promoter than La.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of n-Butane Isomerization on Acid Catalysts Niobium and Lanthanum Promoted Tungstated Zirconia: n-Butane Isomerization Activity\",\"authors\":\"Zahira Mohamed Seghir, M. Djennad, R. Schomäcker, M. R. Ghezzar\",\"doi\":\"10.15255/kui.2021.078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement for environmentally friendly catalysts for the isomerization of alkanes has prompted research on the tung - state-zirconia (WZ) system. The present work examines the activity and selectivity of lanthanum (La) promoted tungstate-zir conia (LWZ) and niobium (Nb) promoted tungstate-zirconia (NWZ) catalysts. In this study, 1 % La promoted WZ (1 % LWZ) and 1 % Nb promoted WZ (1 % NWZ) catalysts were investigated in isomerization of n -butane in the presence of hydrogen. The studied catalysts were characterized by different methods: nitrogen physisorption, temperature programmed desorption of NH 3 , thermogravimetric analysis, and X-ray diffraction. The catalytic activity and selectivity were significantly improved by the addition of 1 % Nb. The redox process in the Nb-containing catalyst (1 % NWZ) played a central role by providing the highest acidic sites (283.53 µmol g −1 ) with appropriate activation energies for the skeletal rearrangement of the reactant ( n -butane). Furthermore, this study highlights the determining role of the transfer process of adsorbed species from ZrO 2 to W as well as to the Nb environment. The conversion of n -butane (27.34 %) and the selectivity to i -butane (92.34 %) for NWZ were signif icantly higher than WZ and LWZ catalysts. The experimental results revealed that Nb was a more effective promoter than La.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15255/kui.2021.078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/kui.2021.078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of n-Butane Isomerization on Acid Catalysts Niobium and Lanthanum Promoted Tungstated Zirconia: n-Butane Isomerization Activity
The requirement for environmentally friendly catalysts for the isomerization of alkanes has prompted research on the tung - state-zirconia (WZ) system. The present work examines the activity and selectivity of lanthanum (La) promoted tungstate-zir conia (LWZ) and niobium (Nb) promoted tungstate-zirconia (NWZ) catalysts. In this study, 1 % La promoted WZ (1 % LWZ) and 1 % Nb promoted WZ (1 % NWZ) catalysts were investigated in isomerization of n -butane in the presence of hydrogen. The studied catalysts were characterized by different methods: nitrogen physisorption, temperature programmed desorption of NH 3 , thermogravimetric analysis, and X-ray diffraction. The catalytic activity and selectivity were significantly improved by the addition of 1 % Nb. The redox process in the Nb-containing catalyst (1 % NWZ) played a central role by providing the highest acidic sites (283.53 µmol g −1 ) with appropriate activation energies for the skeletal rearrangement of the reactant ( n -butane). Furthermore, this study highlights the determining role of the transfer process of adsorbed species from ZrO 2 to W as well as to the Nb environment. The conversion of n -butane (27.34 %) and the selectivity to i -butane (92.34 %) for NWZ were signif icantly higher than WZ and LWZ catalysts. The experimental results revealed that Nb was a more effective promoter than La.