Rabinowitz无界连续体的一般性质

IF 2.1 2区 数学 Q1 MATHEMATICS
D. Bartolucci, Yeyao Hu, Aleks Jevnikar, Wen Yang
{"title":"Rabinowitz无界连续体的一般性质","authors":"D. Bartolucci, Yeyao Hu, Aleks Jevnikar, Wen Yang","doi":"10.1515/ans-2022-0062","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generic properties of the Rabinowitz unbounded continuum\",\"authors\":\"D. Bartolucci, Yeyao Hu, Aleks Jevnikar, Wen Yang\",\"doi\":\"10.1515/ans-2022-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文证明了在广义变分意义下,非线性特征值问题的任意解要么是非退化的,要么满足Crandall-Rabinowitz横截性条件。然后我们推断,一般地,解的无界Rabinowitz连续统是一个简单的解析曲线。全局分岔图类似于二维的Gel 'fand问题的经典模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic properties of the Rabinowitz unbounded continuum
Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信