{"title":"Rabinowitz无界连续体的一般性质","authors":"D. Bartolucci, Yeyao Hu, Aleks Jevnikar, Wen Yang","doi":"10.1515/ans-2022-0062","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generic properties of the Rabinowitz unbounded continuum\",\"authors\":\"D. Bartolucci, Yeyao Hu, Aleks Jevnikar, Wen Yang\",\"doi\":\"10.1515/ans-2022-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generic properties of the Rabinowitz unbounded continuum
Abstract In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically, the unbounded Rabinowitz continuum of solutions is a simple analytic curve. The global bifurcation diagram resembles the classic model case of the Gel’fand problem in two dimensions.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.