{"title":"Hilbert-Schmidt积分算子下Lp球像的逼近","authors":"N. Huseyin","doi":"10.1515/dema-2022-0219","DOIUrl":null,"url":null,"abstract":"Abstract In this article, an approximation of the image of the closed ball of the space L p {L}_{p} ( p > 1 p\\gt 1 ) centered at the origin with radius r r under Hilbert-Schmidt integral operator F ( ⋅ ) : L p → L q F\\left(\\cdot ):{L}_{p}\\to {L}_{q} , 1 p + 1 q = 1 \\frac{1}{p}+\\frac{1}{q}=1 is considered. An error evaluation for the given approximation is obtained.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of the image of the Lp ball under Hilbert-Schmidt integral operator\",\"authors\":\"N. Huseyin\",\"doi\":\"10.1515/dema-2022-0219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, an approximation of the image of the closed ball of the space L p {L}_{p} ( p > 1 p\\\\gt 1 ) centered at the origin with radius r r under Hilbert-Schmidt integral operator F ( ⋅ ) : L p → L q F\\\\left(\\\\cdot ):{L}_{p}\\\\to {L}_{q} , 1 p + 1 q = 1 \\\\frac{1}{p}+\\\\frac{1}{q}=1 is considered. An error evaluation for the given approximation is obtained.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
摘要在本文中,空间Lp的闭球像的一个近似{L}_{p} Hilbert-Schmidt积分算子F(‧):Lp→ L q F\left(\cdot):{L}_{p} \到{L}_{q} ,1 p+1 q=1\frac{1}{p}+\frac{1}{q}=1。获得了给定近似的误差评估。
Approximation of the image of the Lp ball under Hilbert-Schmidt integral operator
Abstract In this article, an approximation of the image of the closed ball of the space L p {L}_{p} ( p > 1 p\gt 1 ) centered at the origin with radius r r under Hilbert-Schmidt integral operator F ( ⋅ ) : L p → L q F\left(\cdot ):{L}_{p}\to {L}_{q} , 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 is considered. An error evaluation for the given approximation is obtained.