关于分布的主值和标准扩展

Pub Date : 2022-04-04 DOI:10.7146/math.scand.a-134458
D. Barlet
{"title":"关于分布的主值和标准扩展","authors":"D. Barlet","doi":"10.7146/math.scand.a-134458","DOIUrl":null,"url":null,"abstract":"For a holomorphic function $f$ on a complex manifold $\\mathscr {M}$ we explain in this article that the distribution associated to $\\lvert  f\\rvert^{2\\alpha } (\\textrm{Log} \\lvert f\\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\\{ \\lvert f\\rvert \\geq \\varepsilon \\}$ when $\\varepsilon $ goes to $0$, coincides for $\\Re (\\alpha ) $ non negative and $q, N \\in \\mathbb {N}$, with the value at $\\lambda = \\alpha $ of the meromorphic extension of the distribution $\\lvert f\\rvert^{2\\lambda } (\\textrm{Log} \\lvert f\\rvert^2)^qf^{-N}$. This implies that any distribution in the $\\mathcal {D}_{\\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\\mathcal {O}_\\mathscr {M}$ torsion result for the $\\mathcal {D}_{\\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \\sum _{h=1}^k (-1)^h\\sigma _hz^{k-h} = 0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On principal value and standard extension of distributions\",\"authors\":\"D. Barlet\",\"doi\":\"10.7146/math.scand.a-134458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a holomorphic function $f$ on a complex manifold $\\\\mathscr {M}$ we explain in this article that the distribution associated to $\\\\lvert  f\\\\rvert^{2\\\\alpha } (\\\\textrm{Log} \\\\lvert f\\\\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\\\\{ \\\\lvert f\\\\rvert \\\\geq \\\\varepsilon \\\\}$ when $\\\\varepsilon $ goes to $0$, coincides for $\\\\Re (\\\\alpha ) $ non negative and $q, N \\\\in \\\\mathbb {N}$, with the value at $\\\\lambda = \\\\alpha $ of the meromorphic extension of the distribution $\\\\lvert f\\\\rvert^{2\\\\lambda } (\\\\textrm{Log} \\\\lvert f\\\\rvert^2)^qf^{-N}$. This implies that any distribution in the $\\\\mathcal {D}_{\\\\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\\\\mathcal {O}_\\\\mathscr {M}$ torsion result for the $\\\\mathcal {D}_{\\\\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\\\\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \\\\sum _{h=1}^k (-1)^h\\\\sigma _hz^{k-h} = 0$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-134458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-134458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于复流形$\mathscr{M}$上的全纯函数$f$,我们在本文中解释了与$\lvert f\rvert ^{2 \alpha}(\textrm{Log}\lvert f \rvert ^2)^q f^{-N}$相关的分布,当$\varepsilon$变为$0$时,通过对集合$\{lvert f\ rvert \geq\varepsilion\}$取相应的极限,与$\Re(\alpha)$非负和$q,N\in\mathbb{N}$重合,具有分布$\lvert-f\rvert^{2\lambda}(\textrm{Log}\lvert-f \rvert^2)^qf^{-N}$的亚纯扩展的$\lambda=\alpha$处的值。这意味着$\mathcal中的任何分布{D}_{\mathscr{M}}$-由这样的分发生成的模块具有标准扩展属性。这意味着非$\mathcal{O}_\$\mathcal的mathscr{M}$扭转结果{D}_{\mathscr{M}}$-由这样的分发生成的模块。作为这一结果的一个应用,我们确定了在[Ballet,D.,On symmetric偏微分算子,Math.Z.302(2022),no.31627-1655]和[Balet,D.,On-P偏微分算子的共轭模的生成元,这些共轭模在[Balllet,D.中引入并研究了正则完整$\mathcal{D}-模,arXiv:21011895]与普遍次方程$k$的根有关,$z^k+\sum_{h=1}^k(-1)^h\sigma\hz^{k-h}=0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On principal value and standard extension of distributions
For a holomorphic function $f$ on a complex manifold $\mathscr {M}$ we explain in this article that the distribution associated to $\lvert  f\rvert^{2\alpha } (\textrm{Log} \lvert f\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\{ \lvert f\rvert \geq \varepsilon \}$ when $\varepsilon $ goes to $0$, coincides for $\Re (\alpha ) $ non negative and $q, N \in \mathbb {N}$, with the value at $\lambda = \alpha $ of the meromorphic extension of the distribution $\lvert f\rvert^{2\lambda } (\textrm{Log} \lvert f\rvert^2)^qf^{-N}$. This implies that any distribution in the $\mathcal {D}_{\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\mathcal {O}_\mathscr {M}$ torsion result for the $\mathcal {D}_{\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \sum _{h=1}^k (-1)^h\sigma _hz^{k-h} = 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信