关于分布的主值和标准扩展

IF 0.3 4区 数学 Q4 MATHEMATICS
D. Barlet
{"title":"关于分布的主值和标准扩展","authors":"D. Barlet","doi":"10.7146/math.scand.a-134458","DOIUrl":null,"url":null,"abstract":"For a holomorphic function $f$ on a complex manifold $\\mathscr {M}$ we explain in this article that the distribution associated to $\\lvert  f\\rvert^{2\\alpha } (\\textrm{Log} \\lvert f\\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\\{ \\lvert f\\rvert \\geq \\varepsilon \\}$ when $\\varepsilon $ goes to $0$, coincides for $\\Re (\\alpha ) $ non negative and $q, N \\in \\mathbb {N}$, with the value at $\\lambda = \\alpha $ of the meromorphic extension of the distribution $\\lvert f\\rvert^{2\\lambda } (\\textrm{Log} \\lvert f\\rvert^2)^qf^{-N}$. This implies that any distribution in the $\\mathcal {D}_{\\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\\mathcal {O}_\\mathscr {M}$ torsion result for the $\\mathcal {D}_{\\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \\sum _{h=1}^k (-1)^h\\sigma _hz^{k-h} = 0$.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On principal value and standard extension of distributions\",\"authors\":\"D. Barlet\",\"doi\":\"10.7146/math.scand.a-134458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a holomorphic function $f$ on a complex manifold $\\\\mathscr {M}$ we explain in this article that the distribution associated to $\\\\lvert  f\\\\rvert^{2\\\\alpha } (\\\\textrm{Log} \\\\lvert f\\\\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\\\\{ \\\\lvert f\\\\rvert \\\\geq \\\\varepsilon \\\\}$ when $\\\\varepsilon $ goes to $0$, coincides for $\\\\Re (\\\\alpha ) $ non negative and $q, N \\\\in \\\\mathbb {N}$, with the value at $\\\\lambda = \\\\alpha $ of the meromorphic extension of the distribution $\\\\lvert f\\\\rvert^{2\\\\lambda } (\\\\textrm{Log} \\\\lvert f\\\\rvert^2)^qf^{-N}$. This implies that any distribution in the $\\\\mathcal {D}_{\\\\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\\\\mathcal {O}_\\\\mathscr {M}$ torsion result for the $\\\\mathcal {D}_{\\\\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\\\\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \\\\sum _{h=1}^k (-1)^h\\\\sigma _hz^{k-h} = 0$.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-134458\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-134458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于复流形$\mathscr{M}$上的全纯函数$f$,我们在本文中解释了与$\lvert f\rvert ^{2 \alpha}(\textrm{Log}\lvert f \rvert ^2)^q f^{-N}$相关的分布,当$\varepsilon$变为$0$时,通过对集合$\{lvert f\ rvert \geq\varepsilion\}$取相应的极限,与$\Re(\alpha)$非负和$q,N\in\mathbb{N}$重合,具有分布$\lvert-f\rvert^{2\lambda}(\textrm{Log}\lvert-f \rvert^2)^qf^{-N}$的亚纯扩展的$\lambda=\alpha$处的值。这意味着$\mathcal中的任何分布{D}_{\mathscr{M}}$-由这样的分发生成的模块具有标准扩展属性。这意味着非$\mathcal{O}_\$\mathcal的mathscr{M}$扭转结果{D}_{\mathscr{M}}$-由这样的分发生成的模块。作为这一结果的一个应用,我们确定了在[Ballet,D.,On symmetric偏微分算子,Math.Z.302(2022),no.31627-1655]和[Balet,D.,On-P偏微分算子的共轭模的生成元,这些共轭模在[Balllet,D.中引入并研究了正则完整$\mathcal{D}-模,arXiv:21011895]与普遍次方程$k$的根有关,$z^k+\sum_{h=1}^k(-1)^h\sigma\hz^{k-h}=0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On principal value and standard extension of distributions
For a holomorphic function $f$ on a complex manifold $\mathscr {M}$ we explain in this article that the distribution associated to $\lvert  f\rvert^{2\alpha } (\textrm{Log} \lvert f\rvert^2)^q f^{-N}$ by taking the corresponding limit on the sets $\{ \lvert f\rvert \geq \varepsilon \}$ when $\varepsilon $ goes to $0$, coincides for $\Re (\alpha ) $ non negative and $q, N \in \mathbb {N}$, with the value at $\lambda = \alpha $ of the meromorphic extension of the distribution $\lvert f\rvert^{2\lambda } (\textrm{Log} \lvert f\rvert^2)^qf^{-N}$. This implies that any distribution in the $\mathcal {D}_{\mathscr {M}}$-module generated by such a distribution has the standard extension property. This implies a non $\mathcal {O}_\mathscr {M}$ torsion result for the $\mathcal {D}_{\mathscr {M}}$-module generated by such a distribution. As an application of this result we determine generators for the conjugate modules of the regular holonomic $\mathcal {D}$-modules introduced and studied in [Barlet, D., On symmetric partial differential operators, Math. Z. 302 (2022), no. 3, 1627–1655] and [Barlet, D., On partial differential operators which annihilate the roots of the universal equation of degree $k$, arXiv:2101.01895] associated to the roots of universal equation of degree $k$, $z^k + \sum _{h=1}^k (-1)^h\sigma _hz^{k-h} = 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信