基于无限可重入有色Petri网的超拓扑互连空间规范

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
D. Zaitsev, T. Shmeleva, B. Pröll
{"title":"基于无限可重入有色Petri网的超拓扑互连空间规范","authors":"D. Zaitsev, T. Shmeleva, B. Pröll","doi":"10.1080/17445760.2021.1952580","DOIUrl":null,"url":null,"abstract":"Multidimensional torus interconnect finds wide application in modern exascale computing. For models design in high-performance computing, grid and cloud computing, and also systems biology, two basic ways of specifying spatial structures with Petri nets are considered – an infinite Petri net specified by a parametric expression (PE) and a reenterable coloured Petri net (CPN). The paper studies a composition of hypertorus grid models in the form of a PE and a reenterable CPN, their mutual transformations, and unfolding into a place/transition net; the parameters are the number of dimensions and the size of grid. A grid is composed via connection of neighbouring cells by dedicated transitions modelling channels. Reenterable model peculiarities are explained on step-by-step simulation examples. The rules of mutual transformations of Petri net spatial specifications are specified. Comparative investigation of two mentioned forms of spatial specifications is implemented, including analysis techniques and tools. CPNs are convenient for the state space analysis. The main advantage of PEs is the ability to obtain linear invariants and other structural constructs of Petri nets, for instance, siphons and traps, in parametric form that allows us to draw conclusions on Petri net properties for any values of parameters.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":"37 1","pages":"1 - 21"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17445760.2021.1952580","citationCount":"3","resultStr":"{\"title\":\"Spatial specification of hypertorus interconnect by infinite and reenterable coloured Petri nets\",\"authors\":\"D. Zaitsev, T. Shmeleva, B. Pröll\",\"doi\":\"10.1080/17445760.2021.1952580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidimensional torus interconnect finds wide application in modern exascale computing. For models design in high-performance computing, grid and cloud computing, and also systems biology, two basic ways of specifying spatial structures with Petri nets are considered – an infinite Petri net specified by a parametric expression (PE) and a reenterable coloured Petri net (CPN). The paper studies a composition of hypertorus grid models in the form of a PE and a reenterable CPN, their mutual transformations, and unfolding into a place/transition net; the parameters are the number of dimensions and the size of grid. A grid is composed via connection of neighbouring cells by dedicated transitions modelling channels. Reenterable model peculiarities are explained on step-by-step simulation examples. The rules of mutual transformations of Petri net spatial specifications are specified. Comparative investigation of two mentioned forms of spatial specifications is implemented, including analysis techniques and tools. CPNs are convenient for the state space analysis. The main advantage of PEs is the ability to obtain linear invariants and other structural constructs of Petri nets, for instance, siphons and traps, in parametric form that allows us to draw conclusions on Petri net properties for any values of parameters.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":\"37 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17445760.2021.1952580\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2021.1952580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2021.1952580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

多维环面互连在现代exascale计算中有着广泛的应用。对于高性能计算、网格和云计算以及系统生物学中的模型设计,考虑了用Petri网指定空间结构的两种基本方法——由参数表达式(PE)指定的无限Petri网和可重入有色Petri网(CPN)。本文研究了PE和可重入CPN形式的超拓扑网格模型的组成、它们的相互转换以及展开为位置/过渡网;参数是尺寸的数量和网格的大小。网格是通过专用的过渡建模通道通过相邻单元的连接组成的。在逐步模拟的例子中解释了可重现模型的特性。给出了Petri网空间规范相互转换的规则。对上述两种形式的空间规范进行了比较研究,包括分析技术和工具。CPN便于进行状态空间分析。PE的主要优点是能够以参数形式获得线性不变量和Petri网的其他结构构造,例如虹吸管和陷阱,这使我们能够对任何参数值的Petri网性质得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial specification of hypertorus interconnect by infinite and reenterable coloured Petri nets
Multidimensional torus interconnect finds wide application in modern exascale computing. For models design in high-performance computing, grid and cloud computing, and also systems biology, two basic ways of specifying spatial structures with Petri nets are considered – an infinite Petri net specified by a parametric expression (PE) and a reenterable coloured Petri net (CPN). The paper studies a composition of hypertorus grid models in the form of a PE and a reenterable CPN, their mutual transformations, and unfolding into a place/transition net; the parameters are the number of dimensions and the size of grid. A grid is composed via connection of neighbouring cells by dedicated transitions modelling channels. Reenterable model peculiarities are explained on step-by-step simulation examples. The rules of mutual transformations of Petri net spatial specifications are specified. Comparative investigation of two mentioned forms of spatial specifications is implemented, including analysis techniques and tools. CPNs are convenient for the state space analysis. The main advantage of PEs is the ability to obtain linear invariants and other structural constructs of Petri nets, for instance, siphons and traps, in parametric form that allows us to draw conclusions on Petri net properties for any values of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信