{"title":"微阵列数据特征选择方法相关性研究","authors":"Barnali Sahu, Satchidananda Dehuri, A. Jagadev","doi":"10.2174/1875036201811010117","DOIUrl":null,"url":null,"abstract":"This paper studies the relevance of feature selection algorithms in microarray data for effective analysis. With no loss of generality, we present a list of feature selection algorithms and propose a generic categorizing framework that systematically groups algorithms into categories. The generic categorizing framework is based on search strategies and evaluation criteria. Further, it provides guidelines for selecting feature selection algorithms in general and in specific to the context of this study. In the context of microarray data analysis, the feature selection algorithms are classified into soft and non-soft computing categories. Their performance analysis with respect to microarray data analysis has been presented.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A Study on the Relevance of Feature Selection Methods in Microarray Data\",\"authors\":\"Barnali Sahu, Satchidananda Dehuri, A. Jagadev\",\"doi\":\"10.2174/1875036201811010117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the relevance of feature selection algorithms in microarray data for effective analysis. With no loss of generality, we present a list of feature selection algorithms and propose a generic categorizing framework that systematically groups algorithms into categories. The generic categorizing framework is based on search strategies and evaluation criteria. Further, it provides guidelines for selecting feature selection algorithms in general and in specific to the context of this study. In the context of microarray data analysis, the feature selection algorithms are classified into soft and non-soft computing categories. Their performance analysis with respect to microarray data analysis has been presented.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201811010117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201811010117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A Study on the Relevance of Feature Selection Methods in Microarray Data
This paper studies the relevance of feature selection algorithms in microarray data for effective analysis. With no loss of generality, we present a list of feature selection algorithms and propose a generic categorizing framework that systematically groups algorithms into categories. The generic categorizing framework is based on search strategies and evaluation criteria. Further, it provides guidelines for selecting feature selection algorithms in general and in specific to the context of this study. In the context of microarray data analysis, the feature selection algorithms are classified into soft and non-soft computing categories. Their performance analysis with respect to microarray data analysis has been presented.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.