{"title":"评价具有不同任务特征的自组织系统的学习和性能特征","authors":"Hao Ji, Yan Jin","doi":"10.1017/S089006042100024X","DOIUrl":null,"url":null,"abstract":"Abstract Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situations with adaptability. Predefining rules for self-organizing agents can be challenging, especially in tasks with high complexity and changing environments. Our previous work has introduced a multiagent reinforcement learning (RL) model as a design approach to solving the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train agents to acquire the task and self-organizing knowledge. However, the simulation was based on one specific task environment. Sensitivity of SOS to reward functions and systematic evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced a rotation reward function to regulate agent behaviors during training and tested different weights of such reward on SOS performance in two case studies: box-pushing and T-shape assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, quality of learned knowledge, and scalability. Results show that depending on the type of tasks; designers may choose appropriate weights of rotation reward to obtain the full potential of agents’ learning capability. Good learning stability and quality of knowledge can be achieved with an optimal range of team sizes. Scaling up to larger team sizes has better performance than scaling downwards.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"404 - 422"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluating the learning and performance characteristics of self-organizing systems with different task features\",\"authors\":\"Hao Ji, Yan Jin\",\"doi\":\"10.1017/S089006042100024X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situations with adaptability. Predefining rules for self-organizing agents can be challenging, especially in tasks with high complexity and changing environments. Our previous work has introduced a multiagent reinforcement learning (RL) model as a design approach to solving the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train agents to acquire the task and self-organizing knowledge. However, the simulation was based on one specific task environment. Sensitivity of SOS to reward functions and systematic evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced a rotation reward function to regulate agent behaviors during training and tested different weights of such reward on SOS performance in two case studies: box-pushing and T-shape assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, quality of learned knowledge, and scalability. Results show that depending on the type of tasks; designers may choose appropriate weights of rotation reward to obtain the full potential of agents’ learning capability. Good learning stability and quality of knowledge can be achieved with an optimal range of team sizes. Scaling up to larger team sizes has better performance than scaling downwards.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"35 1\",\"pages\":\"404 - 422\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S089006042100024X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S089006042100024X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evaluating the learning and performance characteristics of self-organizing systems with different task features
Abstract Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situations with adaptability. Predefining rules for self-organizing agents can be challenging, especially in tasks with high complexity and changing environments. Our previous work has introduced a multiagent reinforcement learning (RL) model as a design approach to solving the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train agents to acquire the task and self-organizing knowledge. However, the simulation was based on one specific task environment. Sensitivity of SOS to reward functions and systematic evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced a rotation reward function to regulate agent behaviors during training and tested different weights of such reward on SOS performance in two case studies: box-pushing and T-shape assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, quality of learned knowledge, and scalability. Results show that depending on the type of tasks; designers may choose appropriate weights of rotation reward to obtain the full potential of agents’ learning capability. Good learning stability and quality of knowledge can be achieved with an optimal range of team sizes. Scaling up to larger team sizes has better performance than scaling downwards.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.