Drell-Yan散射虚修正后的K3曲面的算术和几何

IF 1.2 3区 数学 Q1 MATHEMATICS
M. Besier, Dino Festi, Michael C. Harrison, Bartosz Naskręcki
{"title":"Drell-Yan散射虚修正后的K3曲面的算术和几何","authors":"M. Besier, Dino Festi, Michael C. Harrison, Bartosz Naskręcki","doi":"10.4310/cntp.2020.v14.n4.a4","DOIUrl":null,"url":null,"abstract":"We study a K3 surface, which appears in the two-loop mixed electroweak-quantum chromodynamic virtual corrections to Drell--Yan scattering. A detailed analysis of the geometric Picard lattice is presented, computing its rank and discriminant in two independent ways: first using explicit divisors on the surface and then using an explicit elliptic fibration. We also study in detail the elliptic fibrations of the surface and use them to provide an explicit Shioda--Inose structure. Moreover, we point out the physical relevance of our results.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell–Yan scattering\",\"authors\":\"M. Besier, Dino Festi, Michael C. Harrison, Bartosz Naskręcki\",\"doi\":\"10.4310/cntp.2020.v14.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a K3 surface, which appears in the two-loop mixed electroweak-quantum chromodynamic virtual corrections to Drell--Yan scattering. A detailed analysis of the geometric Picard lattice is presented, computing its rank and discriminant in two independent ways: first using explicit divisors on the surface and then using an explicit elliptic fibration. We also study in detail the elliptic fibrations of the surface and use them to provide an explicit Shioda--Inose structure. Moreover, we point out the physical relevance of our results.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们研究了一个K3表面,它出现在双环混合电弱-量子色动力学对Drell- Yan散射的虚修正中。对几何皮卡德格进行了详细的分析,用两种独立的方法计算其秩和判别式:首先在表面上使用显式除数,然后使用显式椭圆纤维。我们还详细研究了表面的椭圆振动,并利用它们提供了一个明确的Shioda- Inose结构。此外,我们指出了我们的结果的物理相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell–Yan scattering
We study a K3 surface, which appears in the two-loop mixed electroweak-quantum chromodynamic virtual corrections to Drell--Yan scattering. A detailed analysis of the geometric Picard lattice is presented, computing its rank and discriminant in two independent ways: first using explicit divisors on the surface and then using an explicit elliptic fibration. We also study in detail the elliptic fibrations of the surface and use them to provide an explicit Shioda--Inose structure. Moreover, we point out the physical relevance of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信