微米级镍对氢化镁催化作用的实验评价

Q3 Engineering
D. Rahmalina, R. Rahman, I. Ismail
{"title":"微米级镍对氢化镁催化作用的实验评价","authors":"D. Rahmalina, R. Rahman, I. Ismail","doi":"10.37394/232011.2021.16.32","DOIUrl":null,"url":null,"abstract":"Magnesium hydride is well known as the ideal candidate for solid-state hydrogen storage and thermochemical thermal storage since both gravimetric and volumetric storage are considerably high. The main drawbacks of magnesium hydride are thermodynamic unfavorable and poor kinetic. Adding Nickel as a catalyst, which mainly incorporates mechanical modification (alloying or particle size reduction), can accelerate the reaction rate and decrease the enthalpy formation. It is hard to determine the catalytic of Nickel in magnesium hydride for the kinetic rate improvement. This study is focused on the observation of the effect of Nickel on magnesium hydride by using the market size availability of magnesium and nickel powder (74 μm for Mg and 63 μm for Ni). Mg and Ni are mixed by Ni variation (weight %) from 14%, 15%, and 16%. The characterization starts with initial hydrogenation and dehydrogenation, continues with activation and PCI measurement to obtain the kinetic characteristic of each sample. From this study, it is clear that the increase in nickel ratio will improve the rate of reaction for magnesium hydride, where the maximum storage for magnesium hydride is 4.2% by adding 16 wt% nickel.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Evaluation for the Catalytic Effect of Nickel in Micron Size on Magnesium Hydride\",\"authors\":\"D. Rahmalina, R. Rahman, I. Ismail\",\"doi\":\"10.37394/232011.2021.16.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium hydride is well known as the ideal candidate for solid-state hydrogen storage and thermochemical thermal storage since both gravimetric and volumetric storage are considerably high. The main drawbacks of magnesium hydride are thermodynamic unfavorable and poor kinetic. Adding Nickel as a catalyst, which mainly incorporates mechanical modification (alloying or particle size reduction), can accelerate the reaction rate and decrease the enthalpy formation. It is hard to determine the catalytic of Nickel in magnesium hydride for the kinetic rate improvement. This study is focused on the observation of the effect of Nickel on magnesium hydride by using the market size availability of magnesium and nickel powder (74 μm for Mg and 63 μm for Ni). Mg and Ni are mixed by Ni variation (weight %) from 14%, 15%, and 16%. The characterization starts with initial hydrogenation and dehydrogenation, continues with activation and PCI measurement to obtain the kinetic characteristic of each sample. From this study, it is clear that the increase in nickel ratio will improve the rate of reaction for magnesium hydride, where the maximum storage for magnesium hydride is 4.2% by adding 16 wt% nickel.\",\"PeriodicalId\":53603,\"journal\":{\"name\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232011.2021.16.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2021.16.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

氢化镁是固态储氢和热化学储氢的理想候选材料,因为重量和体积储氢量都相当高。氢化镁的主要缺点是热力学性能差和动力学性能差。以机械改性(合金化或晶粒缩小)为主的镍作为催化剂,可以加快反应速度,降低焓的生成。镍在氢化镁中的催化作用难以确定,以提高动力学速率。本研究的重点是观察镍对氢化镁的影响,利用市场上可用的镁和镍粉(Mg为74 μm, Ni为63 μm)。Mg和Ni由Ni的变化(重量%)从14%,15%和16%混合。表征从初始加氢和脱氢开始,继续进行活化和PCI测量,以获得每个样品的动力学特性。从本研究中可以清楚地看出,增加镍的比例将提高氢氧化镁的反应速率,其中添加16 wt%的镍可使氢氧化镁的最大储藏量为4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Evaluation for the Catalytic Effect of Nickel in Micron Size on Magnesium Hydride
Magnesium hydride is well known as the ideal candidate for solid-state hydrogen storage and thermochemical thermal storage since both gravimetric and volumetric storage are considerably high. The main drawbacks of magnesium hydride are thermodynamic unfavorable and poor kinetic. Adding Nickel as a catalyst, which mainly incorporates mechanical modification (alloying or particle size reduction), can accelerate the reaction rate and decrease the enthalpy formation. It is hard to determine the catalytic of Nickel in magnesium hydride for the kinetic rate improvement. This study is focused on the observation of the effect of Nickel on magnesium hydride by using the market size availability of magnesium and nickel powder (74 μm for Mg and 63 μm for Ni). Mg and Ni are mixed by Ni variation (weight %) from 14%, 15%, and 16%. The characterization starts with initial hydrogenation and dehydrogenation, continues with activation and PCI measurement to obtain the kinetic characteristic of each sample. From this study, it is clear that the increase in nickel ratio will improve the rate of reaction for magnesium hydride, where the maximum storage for magnesium hydride is 4.2% by adding 16 wt% nickel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信