利用低成本监测系统评估COVID-19在房间传播的风险

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marek Bujňák, R. Pirník, Pavol Kuchár, K. Rástočný
{"title":"利用低成本监测系统评估COVID-19在房间传播的风险","authors":"Marek Bujňák, R. Pirník, Pavol Kuchár, K. Rástočný","doi":"10.3390/asi6020040","DOIUrl":null,"url":null,"abstract":"High hygiene standards were established during the COVID-19 epidemic, and their adherence was closely monitored. They included the need to regularly wash one’s hands and the requirement to cover person’s upper airways or keep at least a two-meter space between individuals. The ITS (Information Technology Systems) community made a big contribution to this by developing methods and applications for the ongoing observation of people and the environment. Our major objective was to create a low-cost, straightforward system for tracking and assessing the danger of spreading COVID-19 in a space.The proposed system collects data from various low-cost environmental sensors such as temperature, humidity, CO2, the number of people, the dynamics of speech, and the cleanliness of the environment with a significant connection to elements of wearable electronics and then evaluate the level of contamination and possible risks and, in the event of a high level of risk, alerts the person to take actions that can reduce or eliminate favourable conditions for the spread of the virus. The system was created at the Laboratory of industrial control systems of the University of Žilina, Slovakia. The experiment demonstrates the ability and feasibility to control the number of people in a space depending on particular symptoms like fever, coughing, and hand hygiene. On the other hand, the laboratory’s temperature, humidity, and air quality should be controlled to reduce the spread of illness.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the Risk of Spreading COVID-19 in the Room Utilizing Low-Cost Monitoring System\",\"authors\":\"Marek Bujňák, R. Pirník, Pavol Kuchár, K. Rástočný\",\"doi\":\"10.3390/asi6020040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High hygiene standards were established during the COVID-19 epidemic, and their adherence was closely monitored. They included the need to regularly wash one’s hands and the requirement to cover person’s upper airways or keep at least a two-meter space between individuals. The ITS (Information Technology Systems) community made a big contribution to this by developing methods and applications for the ongoing observation of people and the environment. Our major objective was to create a low-cost, straightforward system for tracking and assessing the danger of spreading COVID-19 in a space.The proposed system collects data from various low-cost environmental sensors such as temperature, humidity, CO2, the number of people, the dynamics of speech, and the cleanliness of the environment with a significant connection to elements of wearable electronics and then evaluate the level of contamination and possible risks and, in the event of a high level of risk, alerts the person to take actions that can reduce or eliminate favourable conditions for the spread of the virus. The system was created at the Laboratory of industrial control systems of the University of Žilina, Slovakia. The experiment demonstrates the ability and feasibility to control the number of people in a space depending on particular symptoms like fever, coughing, and hand hygiene. On the other hand, the laboratory’s temperature, humidity, and air quality should be controlled to reduce the spread of illness.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi6020040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6020040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

新冠肺炎疫情期间制定了高卫生标准,并对其遵守情况进行了密切监测。其中包括定期洗手的必要性,以及覆盖人的上呼吸道或保持人与人之间至少两米的距离的要求。ITS(信息技术系统)社区通过开发持续观察人类和环境的方法和应用程序,对此做出了巨大贡献。我们的主要目标是创建一个低成本、简单的系统,用于跟踪和评估新冠肺炎在太空中传播的危险。所提出的系统从各种低成本的环境传感器收集数据,如温度、湿度、CO2、人数、语音动态和与可穿戴电子元件有重要联系的环境清洁度,然后评估污染水平和可能的风险,在高风险的情况下,提醒患者采取行动,减少或消除病毒传播的有利条件。该系统是在斯洛伐克日利纳大学工业控制系统实验室创建的。该实验证明了根据发烧、咳嗽和手部卫生等特定症状控制空间内人数的能力和可行性。另一方面,应控制实验室的温度、湿度和空气质量,以减少疾病的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Risk of Spreading COVID-19 in the Room Utilizing Low-Cost Monitoring System
High hygiene standards were established during the COVID-19 epidemic, and their adherence was closely monitored. They included the need to regularly wash one’s hands and the requirement to cover person’s upper airways or keep at least a two-meter space between individuals. The ITS (Information Technology Systems) community made a big contribution to this by developing methods and applications for the ongoing observation of people and the environment. Our major objective was to create a low-cost, straightforward system for tracking and assessing the danger of spreading COVID-19 in a space.The proposed system collects data from various low-cost environmental sensors such as temperature, humidity, CO2, the number of people, the dynamics of speech, and the cleanliness of the environment with a significant connection to elements of wearable electronics and then evaluate the level of contamination and possible risks and, in the event of a high level of risk, alerts the person to take actions that can reduce or eliminate favourable conditions for the spread of the virus. The system was created at the Laboratory of industrial control systems of the University of Žilina, Slovakia. The experiment demonstrates the ability and feasibility to control the number of people in a space depending on particular symptoms like fever, coughing, and hand hygiene. On the other hand, the laboratory’s temperature, humidity, and air quality should be controlled to reduce the spread of illness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信