不可分解的n维持久性模块的超平面限制

IF 0.8 4区 数学 Q2 MATHEMATICS
Samantha Moore
{"title":"不可分解的n维持久性模块的超平面限制","authors":"Samantha Moore","doi":"10.4310/hha.2022.v24.n2.a14","DOIUrl":null,"url":null,"abstract":"Understanding the structure of indecomposable $n$-dimensional persistence modules is a difficult problem, yet is foundational for studying multipersistence. To this end, Buchet and Escolar showed that any finitely presented rectangular $(n-1)$-dimensional persistence module with finite support is a hyperplane restriction of an $n$-dimensional persistence module. We extend this result to the following: If $M$ is any finitely presented $(n-1)$-dimensional persistence module with finite support, then there exists an indecomposable $n$-dimensional persistence module $M'$ such that $M$ is the restriction of $M'$ to a hyperplane. We also show that any finite zigzag persistence module is the restriction of some indecomposable $3$-dimensional persistence module to a path.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hyperplane restrictions of indecomposable $n$-dimensional persistence modules\",\"authors\":\"Samantha Moore\",\"doi\":\"10.4310/hha.2022.v24.n2.a14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the structure of indecomposable $n$-dimensional persistence modules is a difficult problem, yet is foundational for studying multipersistence. To this end, Buchet and Escolar showed that any finitely presented rectangular $(n-1)$-dimensional persistence module with finite support is a hyperplane restriction of an $n$-dimensional persistence module. We extend this result to the following: If $M$ is any finitely presented $(n-1)$-dimensional persistence module with finite support, then there exists an indecomposable $n$-dimensional persistence module $M'$ such that $M$ is the restriction of $M'$ to a hyperplane. We also show that any finite zigzag persistence module is the restriction of some indecomposable $3$-dimensional persistence module to a path.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2022.v24.n2.a14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

理解不可分解的n维持久性模块的结构是一个难题,但这是研究多持久性的基础。为此,Buchet和Escolar证明了任何具有有限支持的有限呈现的矩形$(n-1)$维持久性模块都是$n维持久性模块的超平面限制。如果$M$是任何有限表示的$(n-1)$维的具有有限支持的持久性模块,则存在一个不可分解的$n维持久性模块$M'$,使得$M$是$M'$对超平面的限制。我们还证明了任何有限之字形持久性模块都是一些不可分解的$3$维持久性模块对路径的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperplane restrictions of indecomposable $n$-dimensional persistence modules
Understanding the structure of indecomposable $n$-dimensional persistence modules is a difficult problem, yet is foundational for studying multipersistence. To this end, Buchet and Escolar showed that any finitely presented rectangular $(n-1)$-dimensional persistence module with finite support is a hyperplane restriction of an $n$-dimensional persistence module. We extend this result to the following: If $M$ is any finitely presented $(n-1)$-dimensional persistence module with finite support, then there exists an indecomposable $n$-dimensional persistence module $M'$ such that $M$ is the restriction of $M'$ to a hyperplane. We also show that any finite zigzag persistence module is the restriction of some indecomposable $3$-dimensional persistence module to a path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信