马来西亚西部柔佛州Batu Pahat Parit Kuari泥炭土工程与力学特性的改善

Q3 Earth and Planetary Sciences
Abdul Wahab, Zaidi Embong, M. Hasan, H. Musa, Q. Zaman, H. Ullah
{"title":"马来西亚西部柔佛州Batu Pahat Parit Kuari泥炭土工程与力学特性的改善","authors":"Abdul Wahab, Zaidi Embong, M. Hasan, H. Musa, Q. Zaman, H. Ullah","doi":"10.7186/bgsm70202011","DOIUrl":null,"url":null,"abstract":"This study focused on the stabilization of peat soil and its engineering and mechanical properties improvement such as shear strength, moisture content, liquid limit and shear wave velocity. Peat is considered as weak foundation soil as they have low shear strength, high compressibility and high moisture content. One of the major problems for the construction industries in Malaysia is slope instability, bearing capacity failure and excessive settlement foundation for the development of highways and buildings when its undertaken-on peatland. Malaysia contains about 3 million hectares peatland which cover 8% of its total land. Therefore, it is essential to find an appropriate way to enhance its properties and to ensure the reduction and solution of these problems can finally solve by applying the electrokinetic stabilization (EKS) method. The peat soil samples were collected from Parit Kuari, Batu Pahat, Johor, Malaysia. In the proposed technique, the voltage gradient of 110 and 150 V was applied for the period of 3 and 6 hours. Some laboratory parameters such as shear strength, moisture content (MC), liquid limit, and shear wave velocity were observed for pre as well as for post-EK. It was observed that strength was found significantly improved from 11.66 to 70 kPa, MC was reduced from 613.989 to 270.294%, liquid limit was increased from 159.261 to 217.603%, and shear wave velocity was improved from 68.5 to 110.5 m/s. A significant improvement has been observed in the physical properties of the peat soil by applying the progressive approach showing the robustness of the methodology.","PeriodicalId":39503,"journal":{"name":"Bulletin of the Geological Society of Malaysia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Peat Soil Engineering And Mechanical Properties Improvement Under The Effect Of EKS Technique At Parit Kuari, Batu Pahat, Johor, West Malaysia\",\"authors\":\"Abdul Wahab, Zaidi Embong, M. Hasan, H. Musa, Q. Zaman, H. Ullah\",\"doi\":\"10.7186/bgsm70202011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focused on the stabilization of peat soil and its engineering and mechanical properties improvement such as shear strength, moisture content, liquid limit and shear wave velocity. Peat is considered as weak foundation soil as they have low shear strength, high compressibility and high moisture content. One of the major problems for the construction industries in Malaysia is slope instability, bearing capacity failure and excessive settlement foundation for the development of highways and buildings when its undertaken-on peatland. Malaysia contains about 3 million hectares peatland which cover 8% of its total land. Therefore, it is essential to find an appropriate way to enhance its properties and to ensure the reduction and solution of these problems can finally solve by applying the electrokinetic stabilization (EKS) method. The peat soil samples were collected from Parit Kuari, Batu Pahat, Johor, Malaysia. In the proposed technique, the voltage gradient of 110 and 150 V was applied for the period of 3 and 6 hours. Some laboratory parameters such as shear strength, moisture content (MC), liquid limit, and shear wave velocity were observed for pre as well as for post-EK. It was observed that strength was found significantly improved from 11.66 to 70 kPa, MC was reduced from 613.989 to 270.294%, liquid limit was increased from 159.261 to 217.603%, and shear wave velocity was improved from 68.5 to 110.5 m/s. A significant improvement has been observed in the physical properties of the peat soil by applying the progressive approach showing the robustness of the methodology.\",\"PeriodicalId\":39503,\"journal\":{\"name\":\"Bulletin of the Geological Society of Malaysia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Geological Society of Malaysia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7186/bgsm70202011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Geological Society of Malaysia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7186/bgsm70202011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4

摘要

本研究的重点是泥炭土的稳定化及其工程力学性能的改善,如抗剪强度、含水量、液限和剪切波速。泥炭被认为是软弱地基土,因为它们具有低抗剪强度、高压缩性和高含水量。马来西亚建筑业面临的主要问题之一是在泥炭地上进行公路和建筑开发时,边坡不稳定、承载力失效和地基沉降过大。马来西亚拥有约300万公顷泥炭地,占其总土地的8%。因此,有必要找到一种适当的方法来提高其性能,并通过应用电动稳定(EKS)方法来确保这些问题的减少和解决。泥炭土样本采集于马来西亚柔佛巴吞巴彦Parit Kuari。在所提出的技术中,施加110和150V的电压梯度3和6小时。观察了EK前后的一些实验室参数,如剪切强度、含水量(MC)、液限和剪切波速。强度从11.66 kPa显著提高到70 kPa,MC从613.989降低到270.294%,液限从159.261提高到217.603%,剪切波速从68.5提高到110.5 m/s。通过应用渐进方法,观察到泥炭土的物理性质有了显著改善,表明了该方法的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peat Soil Engineering And Mechanical Properties Improvement Under The Effect Of EKS Technique At Parit Kuari, Batu Pahat, Johor, West Malaysia
This study focused on the stabilization of peat soil and its engineering and mechanical properties improvement such as shear strength, moisture content, liquid limit and shear wave velocity. Peat is considered as weak foundation soil as they have low shear strength, high compressibility and high moisture content. One of the major problems for the construction industries in Malaysia is slope instability, bearing capacity failure and excessive settlement foundation for the development of highways and buildings when its undertaken-on peatland. Malaysia contains about 3 million hectares peatland which cover 8% of its total land. Therefore, it is essential to find an appropriate way to enhance its properties and to ensure the reduction and solution of these problems can finally solve by applying the electrokinetic stabilization (EKS) method. The peat soil samples were collected from Parit Kuari, Batu Pahat, Johor, Malaysia. In the proposed technique, the voltage gradient of 110 and 150 V was applied for the period of 3 and 6 hours. Some laboratory parameters such as shear strength, moisture content (MC), liquid limit, and shear wave velocity were observed for pre as well as for post-EK. It was observed that strength was found significantly improved from 11.66 to 70 kPa, MC was reduced from 613.989 to 270.294%, liquid limit was increased from 159.261 to 217.603%, and shear wave velocity was improved from 68.5 to 110.5 m/s. A significant improvement has been observed in the physical properties of the peat soil by applying the progressive approach showing the robustness of the methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Geological Society of Malaysia
Bulletin of the Geological Society of Malaysia Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信