提高光催化性能的氧化钨的形貌可控制备

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Liang Tang, Yuan Feng, Wenqian Chen, Yu Zhang, Xiuqing Xi, Bing Gao, Jiajun Wang, Minghong Wu
{"title":"提高光催化性能的氧化钨的形貌可控制备","authors":"Liang Tang,&nbsp;Yuan Feng,&nbsp;Wenqian Chen,&nbsp;Yu Zhang,&nbsp;Xiuqing Xi,&nbsp;Bing Gao,&nbsp;Jiajun Wang,&nbsp;Minghong Wu","doi":"10.1007/s10563-021-09336-6","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring the morphology-property relationship is an important role in addressing the mechanism of hydrogen production. In this work, WO<sub>3</sub> photocatalysts with different morphology were prepared via a solvothermal method. Our first prepared porous WO<sub>3</sub> with the exposed (100) crystal plane, the WO<sub>3</sub> porous nano disk demonstrates a better photocatalytic activity, which is higher than the WO<sub>3</sub> nanorod, WO<sub>3</sub> nanoflower and WO<sub>3</sub> nano block. Further characterizations indicate the WO<sub>3</sub> porous nano disk exhibits high absorption capacity and active lattice structure. Meanwhile, with the introduction of non-noble metal Ni as the co-catalyst, the photocatalytic H<sub>2</sub> evolution was enhanced. This work reveals the importance of regulating surface atomic configuration and catalytic active sites, opens a new avenue for the development of solar-driven water splitting.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10563-021-09336-6","citationCount":"8","resultStr":"{\"title\":\"Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance\",\"authors\":\"Liang Tang,&nbsp;Yuan Feng,&nbsp;Wenqian Chen,&nbsp;Yu Zhang,&nbsp;Xiuqing Xi,&nbsp;Bing Gao,&nbsp;Jiajun Wang,&nbsp;Minghong Wu\",\"doi\":\"10.1007/s10563-021-09336-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring the morphology-property relationship is an important role in addressing the mechanism of hydrogen production. In this work, WO<sub>3</sub> photocatalysts with different morphology were prepared via a solvothermal method. Our first prepared porous WO<sub>3</sub> with the exposed (100) crystal plane, the WO<sub>3</sub> porous nano disk demonstrates a better photocatalytic activity, which is higher than the WO<sub>3</sub> nanorod, WO<sub>3</sub> nanoflower and WO<sub>3</sub> nano block. Further characterizations indicate the WO<sub>3</sub> porous nano disk exhibits high absorption capacity and active lattice structure. Meanwhile, with the introduction of non-noble metal Ni as the co-catalyst, the photocatalytic H<sub>2</sub> evolution was enhanced. This work reveals the importance of regulating surface atomic configuration and catalytic active sites, opens a new avenue for the development of solar-driven water splitting.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10563-021-09336-6\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-021-09336-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09336-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 8

摘要

探索其形态-性质关系对研究其产氢机理具有重要意义。本文采用溶剂热法制备了不同形貌的WO3光催化剂。我们首次制备的多孔WO3与暴露的(100)晶面,WO3多孔纳米盘表现出更好的光催化活性,高于WO3纳米棒、WO3纳米花和WO3纳米块。进一步的表征表明,WO3多孔纳米盘具有较高的吸收能力和活跃的晶格结构。同时,引入非贵金属Ni作为助催化剂,增强了光催化析氢。这项工作揭示了调节表面原子构型和催化活性位点的重要性,为太阳能驱动水分解的发展开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance

Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance

Exploring the morphology-property relationship is an important role in addressing the mechanism of hydrogen production. In this work, WO3 photocatalysts with different morphology were prepared via a solvothermal method. Our first prepared porous WO3 with the exposed (100) crystal plane, the WO3 porous nano disk demonstrates a better photocatalytic activity, which is higher than the WO3 nanorod, WO3 nanoflower and WO3 nano block. Further characterizations indicate the WO3 porous nano disk exhibits high absorption capacity and active lattice structure. Meanwhile, with the introduction of non-noble metal Ni as the co-catalyst, the photocatalytic H2 evolution was enhanced. This work reveals the importance of regulating surface atomic configuration and catalytic active sites, opens a new avenue for the development of solar-driven water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信