{"title":"金融序列的奇异谱分析与预测","authors":"A. Makshanov, A. Musaev, D. Grigoriev","doi":"10.1515/demo-2022-0112","DOIUrl":null,"url":null,"abstract":"Abstract Modern techniques for managing multidimensional stochastic processes that reflect the dynamics of unstable environments are proactive, which refers to decision making based on forecasting the system’s state vector evolution. At the same time, the dynamics of open nonlinear systems are largely determined by their chaotic nature, which leads to a violation of stationarity and ergodicity of the series of observations and, as a result, to a catastrophic decrease in the efficiency of forecasting algorithms based on traditional methods of multivariate statistical data analysis. In this article, we make an attempt to reduce the instability influence by employing singular spectrum analysis (SSA) algorithms. This technique has been employed in a wide class of applied data analysis problems formulated in terms of singular decomposition of data matrices: technologies of immunocomputing and SSA.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"215 - 224"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing and forecasting financial series with singular spectral analysis\",\"authors\":\"A. Makshanov, A. Musaev, D. Grigoriev\",\"doi\":\"10.1515/demo-2022-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Modern techniques for managing multidimensional stochastic processes that reflect the dynamics of unstable environments are proactive, which refers to decision making based on forecasting the system’s state vector evolution. At the same time, the dynamics of open nonlinear systems are largely determined by their chaotic nature, which leads to a violation of stationarity and ergodicity of the series of observations and, as a result, to a catastrophic decrease in the efficiency of forecasting algorithms based on traditional methods of multivariate statistical data analysis. In this article, we make an attempt to reduce the instability influence by employing singular spectrum analysis (SSA) algorithms. This technique has been employed in a wide class of applied data analysis problems formulated in terms of singular decomposition of data matrices: technologies of immunocomputing and SSA.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"10 1\",\"pages\":\"215 - 224\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Analyzing and forecasting financial series with singular spectral analysis
Abstract Modern techniques for managing multidimensional stochastic processes that reflect the dynamics of unstable environments are proactive, which refers to decision making based on forecasting the system’s state vector evolution. At the same time, the dynamics of open nonlinear systems are largely determined by their chaotic nature, which leads to a violation of stationarity and ergodicity of the series of observations and, as a result, to a catastrophic decrease in the efficiency of forecasting algorithms based on traditional methods of multivariate statistical data analysis. In this article, we make an attempt to reduce the instability influence by employing singular spectrum analysis (SSA) algorithms. This technique has been employed in a wide class of applied data analysis problems formulated in terms of singular decomposition of data matrices: technologies of immunocomputing and SSA.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations