{"title":"具有非对称反馈和反射的弹壳模型","authors":"M. Menshikov, V. Shcherbakov","doi":"10.30757/alea.v20-01","DOIUrl":null,"url":null,"abstract":"Balls-in-bins models describe a random sequential allocation of infinitely many balls into a finite number of bins. In these models a ball is placed into a bin with probability proportional to a given function (feedback function), which depends on the number of existing balls in the bin. Typically, the feedback function is the same for all bins (symmetric feedback), and there are no constraints on the number of balls in the bins. In this paper we study versions of BB models with two bins, in which the above assumptions are violated. In the first model of interest the feedback functions can depend on a bin (BB model with asymmetric feedback). In the case when both feedback functions are power law and superlinear, a single bin receives all but finitely many balls almost surely, and we study the probability that this happens for a given bin. In particular, under certain initial conditions we derive the normal approximation for this probability, which generalizes the result in [5] obtained in the case of the symmetric feedback. The main part of the paper concerns the BB model with asymmetric feedback evolving subject to certain constraints on the numbers of allocated balls. The model can be interpreted as a transient reflecting random walk in a curvilinear wedge, and we obtain a complete classification of its long term behavior.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Balls-in-bins models with asymmetric feedback and reflection\",\"authors\":\"M. Menshikov, V. Shcherbakov\",\"doi\":\"10.30757/alea.v20-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Balls-in-bins models describe a random sequential allocation of infinitely many balls into a finite number of bins. In these models a ball is placed into a bin with probability proportional to a given function (feedback function), which depends on the number of existing balls in the bin. Typically, the feedback function is the same for all bins (symmetric feedback), and there are no constraints on the number of balls in the bins. In this paper we study versions of BB models with two bins, in which the above assumptions are violated. In the first model of interest the feedback functions can depend on a bin (BB model with asymmetric feedback). In the case when both feedback functions are power law and superlinear, a single bin receives all but finitely many balls almost surely, and we study the probability that this happens for a given bin. In particular, under certain initial conditions we derive the normal approximation for this probability, which generalizes the result in [5] obtained in the case of the symmetric feedback. The main part of the paper concerns the BB model with asymmetric feedback evolving subject to certain constraints on the numbers of allocated balls. The model can be interpreted as a transient reflecting random walk in a curvilinear wedge, and we obtain a complete classification of its long term behavior.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Balls-in-bins models with asymmetric feedback and reflection
Balls-in-bins models describe a random sequential allocation of infinitely many balls into a finite number of bins. In these models a ball is placed into a bin with probability proportional to a given function (feedback function), which depends on the number of existing balls in the bin. Typically, the feedback function is the same for all bins (symmetric feedback), and there are no constraints on the number of balls in the bins. In this paper we study versions of BB models with two bins, in which the above assumptions are violated. In the first model of interest the feedback functions can depend on a bin (BB model with asymmetric feedback). In the case when both feedback functions are power law and superlinear, a single bin receives all but finitely many balls almost surely, and we study the probability that this happens for a given bin. In particular, under certain initial conditions we derive the normal approximation for this probability, which generalizes the result in [5] obtained in the case of the symmetric feedback. The main part of the paper concerns the BB model with asymmetric feedback evolving subject to certain constraints on the numbers of allocated balls. The model can be interpreted as a transient reflecting random walk in a curvilinear wedge, and we obtain a complete classification of its long term behavior.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.