乙醇气体检测用生物传感器的研制

Q3 Engineering
Mekhala Insawang, Kongphope Chaarmart, T. Seetawan
{"title":"乙醇气体检测用生物传感器的研制","authors":"Mekhala Insawang, Kongphope Chaarmart, T. Seetawan","doi":"10.18280/i2m.210203","DOIUrl":null,"url":null,"abstract":"This work developed a biosensor for the measurement of ethanol gas in the air. The biosensors were synthesized by mixing signal layer materials containing SiO2 and polyimide (PI) substrates using the enzyme Alcohol Dehydrogenase (ADH) and coenzyme Nicotinamide Adenine Dinucleotide (NAD+) as a biosensor. The electrodes were coated on biosensors by DC magnetron sputtering method for test the response performance of the developed biosensors. The ADH/NAD+ was immobilized on the Ag electrode by Glutaric dialaehyde 25 wt. % cross-linking procedure. It was found that, alcohol biosensors can be exhibited sensing ethanol gas at even low concentrations from 300 ppb to very high concentrations up to 1900 ppm, response time 3 s, recovery times 1-2 minutes and good sensitivity. The SiO2 substrate has excellent, which provides significant advantages for wearable electronic device that compact, easy to use and reduce direct contact with alcoholics. The alcohol biosensors can adoption in next generation to other electronic devices, because easy to integrate, such as a module alcohol biosensor with wireless or the fabrication of the RCL circuit. Furthermore, the alcohol biosensors based on SiO2/Ag/ADH, PI/Ag/ADH is artificial intelligence strategy for stable practical wearable electronic devices.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Biosensors for Ethanol Gas Detection\",\"authors\":\"Mekhala Insawang, Kongphope Chaarmart, T. Seetawan\",\"doi\":\"10.18280/i2m.210203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work developed a biosensor for the measurement of ethanol gas in the air. The biosensors were synthesized by mixing signal layer materials containing SiO2 and polyimide (PI) substrates using the enzyme Alcohol Dehydrogenase (ADH) and coenzyme Nicotinamide Adenine Dinucleotide (NAD+) as a biosensor. The electrodes were coated on biosensors by DC magnetron sputtering method for test the response performance of the developed biosensors. The ADH/NAD+ was immobilized on the Ag electrode by Glutaric dialaehyde 25 wt. % cross-linking procedure. It was found that, alcohol biosensors can be exhibited sensing ethanol gas at even low concentrations from 300 ppb to very high concentrations up to 1900 ppm, response time 3 s, recovery times 1-2 minutes and good sensitivity. The SiO2 substrate has excellent, which provides significant advantages for wearable electronic device that compact, easy to use and reduce direct contact with alcoholics. The alcohol biosensors can adoption in next generation to other electronic devices, because easy to integrate, such as a module alcohol biosensor with wireless or the fabrication of the RCL circuit. Furthermore, the alcohol biosensors based on SiO2/Ag/ADH, PI/Ag/ADH is artificial intelligence strategy for stable practical wearable electronic devices.\",\"PeriodicalId\":38637,\"journal\":{\"name\":\"Instrumentation Mesure Metrologie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instrumentation Mesure Metrologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/i2m.210203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.210203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

这项工作开发了一种用于测量空气中乙醇气体的生物传感器。以乙醇脱氢酶(ADH)和辅酶烟酰胺腺嘌呤二核苷酸(NAD+)为生物传感器,将含有SiO2和聚酰亚胺(PI)底物的信号层材料混合制备生物传感器。采用直流磁控溅射法将电极涂覆在生物传感器上,测试所研制的生物传感器的响应性能。采用戊二醛25wt . %交联法将ADH/NAD+固定在Ag电极上。结果表明,酒精生物传感器可以在低浓度(300 ppb)到高浓度(1900 ppm)的乙醇气体中检测乙醇气体,响应时间3 s,恢复时间1-2分钟,具有良好的灵敏度。SiO2基板具有优异的性能,为可穿戴电子设备提供了紧凑、易于使用和减少与酒精直接接触的显著优势。由于易于集成,下一代酒精生物传感器可以应用于其他电子设备,如无线酒精生物传感器模块或RCL电路的制造。此外,基于SiO2/Ag/ADH、PI/Ag/ADH的酒精生物传感器是稳定实用的可穿戴电子设备的人工智能策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Biosensors for Ethanol Gas Detection
This work developed a biosensor for the measurement of ethanol gas in the air. The biosensors were synthesized by mixing signal layer materials containing SiO2 and polyimide (PI) substrates using the enzyme Alcohol Dehydrogenase (ADH) and coenzyme Nicotinamide Adenine Dinucleotide (NAD+) as a biosensor. The electrodes were coated on biosensors by DC magnetron sputtering method for test the response performance of the developed biosensors. The ADH/NAD+ was immobilized on the Ag electrode by Glutaric dialaehyde 25 wt. % cross-linking procedure. It was found that, alcohol biosensors can be exhibited sensing ethanol gas at even low concentrations from 300 ppb to very high concentrations up to 1900 ppm, response time 3 s, recovery times 1-2 minutes and good sensitivity. The SiO2 substrate has excellent, which provides significant advantages for wearable electronic device that compact, easy to use and reduce direct contact with alcoholics. The alcohol biosensors can adoption in next generation to other electronic devices, because easy to integrate, such as a module alcohol biosensor with wireless or the fabrication of the RCL circuit. Furthermore, the alcohol biosensors based on SiO2/Ag/ADH, PI/Ag/ADH is artificial intelligence strategy for stable practical wearable electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信