{"title":"含交联剂和不含交联剂的生物聚合物壳聚糖基水凝胶的合成用于去除工业染料普罗西翁蓝HERD的比较研究","authors":"N. Bhullar, M. Garg, K. Kumari, D. Sud","doi":"10.1080/00194506.2022.2046509","DOIUrl":null,"url":null,"abstract":"ABSTRACT The current study reports the preparation and application of bio-based polymer composite hydrogel with and without a crosslinker for the removal of industrial dye procion blue HERD (PB). Biopolymer chitosan, acrylic acid as a monomer and potassium persulphate (K2S2O8) as an initiator synthesise composite hydrogel. The crosslinked composite hydrogel is synthesised by the microwave irradiation technique using thiourea (CH4N2S) as a crosslinker. Chitosan-based hydrogel synthesised without crosslinker (CH) and with crosslinker thiourea (CH-T) is analysed using techniques, such as Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTG) and derivative thermogravimetric analysis (DTA). The adsorption capacity of CH and CH-T for the removal of PB from an aqueous solution is investigated. The removal efficiency of hydrogel is 90% in a solution of pH 7 for a constant dose of PB (5 mg L−1). The experimental data attained for the adsorption of industrial dye (PB) onto CH and CH-T showed a perfect fit for Freundlich and Langmuir isotherms. The perfect fit of experimental data for PB decolorisation is observed for pseudo-second-order kinetic equation with k values 10.17 × 10−3 mg−1 min−1 and 6.719 × 10−3 mg−1 min−1 with CH and CH-T, respectively. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of biopolymer chitosan-based hydrogels with and without a crosslinker for the removal of industrial dye procion blue HERD: a comparative study\",\"authors\":\"N. Bhullar, M. Garg, K. Kumari, D. Sud\",\"doi\":\"10.1080/00194506.2022.2046509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The current study reports the preparation and application of bio-based polymer composite hydrogel with and without a crosslinker for the removal of industrial dye procion blue HERD (PB). Biopolymer chitosan, acrylic acid as a monomer and potassium persulphate (K2S2O8) as an initiator synthesise composite hydrogel. The crosslinked composite hydrogel is synthesised by the microwave irradiation technique using thiourea (CH4N2S) as a crosslinker. Chitosan-based hydrogel synthesised without crosslinker (CH) and with crosslinker thiourea (CH-T) is analysed using techniques, such as Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTG) and derivative thermogravimetric analysis (DTA). The adsorption capacity of CH and CH-T for the removal of PB from an aqueous solution is investigated. The removal efficiency of hydrogel is 90% in a solution of pH 7 for a constant dose of PB (5 mg L−1). The experimental data attained for the adsorption of industrial dye (PB) onto CH and CH-T showed a perfect fit for Freundlich and Langmuir isotherms. The perfect fit of experimental data for PB decolorisation is observed for pseudo-second-order kinetic equation with k values 10.17 × 10−3 mg−1 min−1 and 6.719 × 10−3 mg−1 min−1 with CH and CH-T, respectively. GRAPHICAL ABSTRACT\",\"PeriodicalId\":13430,\"journal\":{\"name\":\"Indian Chemical Engineer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Chemical Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00194506.2022.2046509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2022.2046509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis of biopolymer chitosan-based hydrogels with and without a crosslinker for the removal of industrial dye procion blue HERD: a comparative study
ABSTRACT The current study reports the preparation and application of bio-based polymer composite hydrogel with and without a crosslinker for the removal of industrial dye procion blue HERD (PB). Biopolymer chitosan, acrylic acid as a monomer and potassium persulphate (K2S2O8) as an initiator synthesise composite hydrogel. The crosslinked composite hydrogel is synthesised by the microwave irradiation technique using thiourea (CH4N2S) as a crosslinker. Chitosan-based hydrogel synthesised without crosslinker (CH) and with crosslinker thiourea (CH-T) is analysed using techniques, such as Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTG) and derivative thermogravimetric analysis (DTA). The adsorption capacity of CH and CH-T for the removal of PB from an aqueous solution is investigated. The removal efficiency of hydrogel is 90% in a solution of pH 7 for a constant dose of PB (5 mg L−1). The experimental data attained for the adsorption of industrial dye (PB) onto CH and CH-T showed a perfect fit for Freundlich and Langmuir isotherms. The perfect fit of experimental data for PB decolorisation is observed for pseudo-second-order kinetic equation with k values 10.17 × 10−3 mg−1 min−1 and 6.719 × 10−3 mg−1 min−1 with CH and CH-T, respectively. GRAPHICAL ABSTRACT