使用基于进化优化函数的方法对流量传感器进行线性化

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
J. B. Thangamalar, A. Abudhahir
{"title":"使用基于进化优化函数的方法对流量传感器进行线性化","authors":"J. B. Thangamalar, A. Abudhahir","doi":"10.1108/cw-09-2020-0251","DOIUrl":null,"url":null,"abstract":"Purpose\nThis study aims to propose optimised function-based evolutionary algorithms in this research to effectively replace the traditional electronic circuitry used in linearising constant temperature anemometer (CTA) and Microbridge mass flow sensor AWM 5000.\n\nDesign/methodology/approach\nThe proposed linearisation technique effectively uses the ratiometric function for the linearisation of CTA and Microbridge mass flow sensor AWM 5000. In addition, the well-known transfer relation, namely, the King’s Law is used for the linearisation of CTA and successfully implemented using LabVIEW 7.1.\n\nFindings\nInvestigational results unveil that the proposed evolutionary optimised linearisation technique performs better in linearisation of both CTA and Mass flow sensors, and hence finds applications for computer-based flow measurement/control systems.\n\nOriginality/value\nThe evolutionary optimisation algorithms such as the real-coded genetic algorithm, particle swarm optimisation algorithm, differential evolution algorithm and covariance matrix adopted evolutionary strategy algorithm are used to determine the optimal values of the parameters present in the proposed ratiometric function. The performance measures, namely, the full-scale error and mean square error are used to analyse the overall performance of the proposed approach is compared to a state of art techniques available in the literature.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearisation of flow sensors using evolutionary optimised function-based methods\",\"authors\":\"J. B. Thangamalar, A. Abudhahir\",\"doi\":\"10.1108/cw-09-2020-0251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose\\nThis study aims to propose optimised function-based evolutionary algorithms in this research to effectively replace the traditional electronic circuitry used in linearising constant temperature anemometer (CTA) and Microbridge mass flow sensor AWM 5000.\\n\\nDesign/methodology/approach\\nThe proposed linearisation technique effectively uses the ratiometric function for the linearisation of CTA and Microbridge mass flow sensor AWM 5000. In addition, the well-known transfer relation, namely, the King’s Law is used for the linearisation of CTA and successfully implemented using LabVIEW 7.1.\\n\\nFindings\\nInvestigational results unveil that the proposed evolutionary optimised linearisation technique performs better in linearisation of both CTA and Mass flow sensors, and hence finds applications for computer-based flow measurement/control systems.\\n\\nOriginality/value\\nThe evolutionary optimisation algorithms such as the real-coded genetic algorithm, particle swarm optimisation algorithm, differential evolution algorithm and covariance matrix adopted evolutionary strategy algorithm are used to determine the optimal values of the parameters present in the proposed ratiometric function. The performance measures, namely, the full-scale error and mean square error are used to analyse the overall performance of the proposed approach is compared to a state of art techniques available in the literature.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-09-2020-0251\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-09-2020-0251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提出优化的基于功能的进化算法,以有效取代线性化恒温风速仪(CTA)和Microbridge质量流量传感器AWM 5000中使用的传统电子电路。所提出的线性化技术有效地利用比率函数对CTA和Microbridge质量流量传感器AWM 5000进行线性化。此外,众所周知的转移关系,即国王定律用于CTA的线性化,并使用LabVIEW 7.1成功实现。研究结果揭示了提出的进化优化线性化技术在CTA和质量流量传感器的线性化方面表现更好,因此发现了基于计算机的流量测量/控制系统的应用。采用实数编码遗传算法、粒子群优化算法、差分进化算法、协方差矩阵等进化优化算法确定比例函数中各参数的最优值。性能测量,即全尺寸误差和均方误差被用来分析所提出的方法的整体性能,并与文献中现有的技术进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearisation of flow sensors using evolutionary optimised function-based methods
Purpose This study aims to propose optimised function-based evolutionary algorithms in this research to effectively replace the traditional electronic circuitry used in linearising constant temperature anemometer (CTA) and Microbridge mass flow sensor AWM 5000. Design/methodology/approach The proposed linearisation technique effectively uses the ratiometric function for the linearisation of CTA and Microbridge mass flow sensor AWM 5000. In addition, the well-known transfer relation, namely, the King’s Law is used for the linearisation of CTA and successfully implemented using LabVIEW 7.1. Findings Investigational results unveil that the proposed evolutionary optimised linearisation technique performs better in linearisation of both CTA and Mass flow sensors, and hence finds applications for computer-based flow measurement/control systems. Originality/value The evolutionary optimisation algorithms such as the real-coded genetic algorithm, particle swarm optimisation algorithm, differential evolution algorithm and covariance matrix adopted evolutionary strategy algorithm are used to determine the optimal values of the parameters present in the proposed ratiometric function. The performance measures, namely, the full-scale error and mean square error are used to analyse the overall performance of the proposed approach is compared to a state of art techniques available in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circuit World
Circuit World 工程技术-材料科学:综合
CiteScore
2.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes. Circuit World covers a broad range of topics, including: • Circuit theory, design methodology, analysis and simulation • Digital, analog, microwave and optoelectronic integrated circuits • Semiconductors, passives, connectors and sensors • Electronic packaging of components, assemblies and products • PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes) • Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal) • Internet of Things (IoT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信