混合整数半定优化问题的求解

Frederic Matter, M. Pfetsch
{"title":"混合整数半定优化问题的求解","authors":"Frederic Matter, M. Pfetsch","doi":"10.1287/ijoo.2022.0079","DOIUrl":null,"url":null,"abstract":"This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The methods considered include adding linear constraints, deriving bounds relying on 2 × 2 minors of the semidefinite constraints, tightening of variable bounds based on solving a semidefinite program with one variable, and scaling of the matrices in the semidefinite constraints. Tightening the bounds of variables can also be used in a node presolving step. Along the way, we discuss how to solve semidefinite programs with one variable using a semismooth Newton method and the convergence of iteratively applying bound tightening. We then provide an extensive computational comparison of the different presolving methods, demonstrating their effectiveness with an improvement in running time of about 22% on average. The impact depends on the instance type and varies across the methods.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Presolving for Mixed-Integer Semidefinite Optimization\",\"authors\":\"Frederic Matter, M. Pfetsch\",\"doi\":\"10.1287/ijoo.2022.0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The methods considered include adding linear constraints, deriving bounds relying on 2 × 2 minors of the semidefinite constraints, tightening of variable bounds based on solving a semidefinite program with one variable, and scaling of the matrices in the semidefinite constraints. Tightening the bounds of variables can also be used in a node presolving step. Along the way, we discuss how to solve semidefinite programs with one variable using a semismooth Newton method and the convergence of iteratively applying bound tightening. We then provide an extensive computational comparison of the different presolving methods, demonstrating their effectiveness with an improvement in running time of about 22% on average. The impact depends on the instance type and varies across the methods.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2022.0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论并评价了混合整数半定规划的求解方法。推广了混合整数线性情况下的方法,引入了依赖于半定条件的新方法。所考虑的方法包括添加线性约束、依靠半定约束的2 × 2次元推导边界、基于求解单变量半定规划的变量边界收紧以及半定约束中矩阵的缩放。收紧变量的边界也可以在节点解析步骤中使用。在此过程中,我们讨论了如何用半光滑牛顿法求解一元半定规划,以及如何使用界紧迭代的收敛性。然后,我们对不同的求解方法进行了广泛的计算比较,证明了它们的有效性,平均运行时间提高了约22%。影响取决于实例类型,并因方法而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presolving for Mixed-Integer Semidefinite Optimization
This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The methods considered include adding linear constraints, deriving bounds relying on 2 × 2 minors of the semidefinite constraints, tightening of variable bounds based on solving a semidefinite program with one variable, and scaling of the matrices in the semidefinite constraints. Tightening the bounds of variables can also be used in a node presolving step. Along the way, we discuss how to solve semidefinite programs with one variable using a semismooth Newton method and the convergence of iteratively applying bound tightening. We then provide an extensive computational comparison of the different presolving methods, demonstrating their effectiveness with an improvement in running time of about 22% on average. The impact depends on the instance type and varies across the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信