为奥康奈尔效应双星设计的探测指标

IF 16.281
Kyle B. Johnston, Rana Haber, Saida M. Caballero-Nieves, Adrian M. Peter, Véronique Petit, Matt Knote
{"title":"为奥康奈尔效应双星设计的探测指标","authors":"Kyle B. Johnston,&nbsp;Rana Haber,&nbsp;Saida M. Caballero-Nieves,&nbsp;Adrian M. Peter,&nbsp;Véronique Petit,&nbsp;Matt Knote","doi":"10.1186/s40668-019-0031-2","DOIUrl":null,"url":null,"abstract":"<p>We present the construction of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm. We focus on the targeted identification of eclipsing binaries that demonstrate a feature known as the O’Connell effect. Our proposed methodology maps stellar variable observations to a new representation known as distribution fields (DFs). Given this novel representation, we develop a metric learning technique directly on the DF space that is capable of specifically identifying our stars of interest. The metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the O’Connell effect. The result is a conservative selection of 124 potential targets of interest out of the Villanova Eclipsing Binary Catalog. Our framework demonstrates favorable performance on Kepler eclipsing binary data, taking a crucial step in preparing the way for large-scale data volumes from next-generation telescopes such as LSST and SKA.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":null,"pages":null},"PeriodicalIF":16.2810,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-019-0031-2","citationCount":"4","resultStr":"{\"title\":\"A detection metric designed for O’Connell effect eclipsing binaries\",\"authors\":\"Kyle B. Johnston,&nbsp;Rana Haber,&nbsp;Saida M. Caballero-Nieves,&nbsp;Adrian M. Peter,&nbsp;Véronique Petit,&nbsp;Matt Knote\",\"doi\":\"10.1186/s40668-019-0031-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the construction of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm. We focus on the targeted identification of eclipsing binaries that demonstrate a feature known as the O’Connell effect. Our proposed methodology maps stellar variable observations to a new representation known as distribution fields (DFs). Given this novel representation, we develop a metric learning technique directly on the DF space that is capable of specifically identifying our stars of interest. The metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the O’Connell effect. The result is a conservative selection of 124 potential targets of interest out of the Villanova Eclipsing Binary Catalog. Our framework demonstrates favorable performance on Kepler eclipsing binary data, taking a crucial step in preparing the way for large-scale data volumes from next-generation telescopes such as LSST and SKA.</p>\",\"PeriodicalId\":523,\"journal\":{\"name\":\"Computational Astrophysics and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.2810,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40668-019-0031-2\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Astrophysics and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40668-019-0031-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-019-0031-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种新的时域签名提取方法,并开发了一种支持监督模式检测的算法。我们专注于有针对性地识别日食双星,展示了一种被称为奥康奈尔效应的特征。我们提出的方法将恒星变量观测映射到称为分布场(DFs)的新表示。鉴于这种新颖的表示,我们直接在DF空间上开发了一种度量学习技术,该技术能够专门识别我们感兴趣的恒星。该指标是根据开普勒调查的一组标记的双星数据进行调整的,目标是表现出奥康奈尔效应的特定系统。结果是从维拉诺瓦月食双星表中保守地选择了124个潜在的感兴趣的目标。我们的框架在开普勒日食双星数据上表现良好,为下一代望远镜(如LSST和SKA)的大规模数据量做好了准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A detection metric designed for O’Connell effect eclipsing binaries

A detection metric designed for O’Connell effect eclipsing binaries

We present the construction of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm. We focus on the targeted identification of eclipsing binaries that demonstrate a feature known as the O’Connell effect. Our proposed methodology maps stellar variable observations to a new representation known as distribution fields (DFs). Given this novel representation, we develop a metric learning technique directly on the DF space that is capable of specifically identifying our stars of interest. The metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the O’Connell effect. The result is a conservative selection of 124 potential targets of interest out of the Villanova Eclipsing Binary Catalog. Our framework demonstrates favorable performance on Kepler eclipsing binary data, taking a crucial step in preparing the way for large-scale data volumes from next-generation telescopes such as LSST and SKA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信