{"title":"评估松在东加州气候重建中的潜力","authors":"Thomas Wilding, C. Woodhouse","doi":"10.3959/1536-1098-73.1.11","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper documents a pilot study investigating the potential use of pinyon pine (Pinus monophylla Torr. & Frem) growing in the White Mountains of eastern California for climate reconstructions. The single-leaf pinyon pine from this study exhibit a significant and stable relationship with annual (August–July) precipitation over the instrumental record (r = 0.69). This relationship is stronger than that of the lower forest border bristlecone pine (Pinus longaeva) growing nearby. Spatially, the climate-growth relationship remains strong beyond this localized region, extending over Southern California. Although pinyon pine is not as long lived as the bristlecone pine, these results indicate that the strength of the climate-growth relationship makes this species valuable in developing climate reconstructions in the future. Additionally, the presence of persistent remnant wood at all sampling sites offers an opportunity to extend pinyon records further back in time. Furthermore, the close proximity of pinyon pine to bristlecone pine at these sites presents the possibility of developing multi-species reconstructions using both species.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"73 1","pages":"11 - 23"},"PeriodicalIF":1.1000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3959/1536-1098-73.1.11","citationCount":"0","resultStr":"{\"title\":\"Assessing the Potential of Pinyon Pine for Climate Reconstructions in Eastern California\",\"authors\":\"Thomas Wilding, C. Woodhouse\",\"doi\":\"10.3959/1536-1098-73.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper documents a pilot study investigating the potential use of pinyon pine (Pinus monophylla Torr. & Frem) growing in the White Mountains of eastern California for climate reconstructions. The single-leaf pinyon pine from this study exhibit a significant and stable relationship with annual (August–July) precipitation over the instrumental record (r = 0.69). This relationship is stronger than that of the lower forest border bristlecone pine (Pinus longaeva) growing nearby. Spatially, the climate-growth relationship remains strong beyond this localized region, extending over Southern California. Although pinyon pine is not as long lived as the bristlecone pine, these results indicate that the strength of the climate-growth relationship makes this species valuable in developing climate reconstructions in the future. Additionally, the presence of persistent remnant wood at all sampling sites offers an opportunity to extend pinyon records further back in time. Furthermore, the close proximity of pinyon pine to bristlecone pine at these sites presents the possibility of developing multi-species reconstructions using both species.\",\"PeriodicalId\":54416,\"journal\":{\"name\":\"Tree-Ring Research\",\"volume\":\"73 1\",\"pages\":\"11 - 23\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3959/1536-1098-73.1.11\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree-Ring Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3959/1536-1098-73.1.11\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-73.1.11","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Assessing the Potential of Pinyon Pine for Climate Reconstructions in Eastern California
ABSTRACT This paper documents a pilot study investigating the potential use of pinyon pine (Pinus monophylla Torr. & Frem) growing in the White Mountains of eastern California for climate reconstructions. The single-leaf pinyon pine from this study exhibit a significant and stable relationship with annual (August–July) precipitation over the instrumental record (r = 0.69). This relationship is stronger than that of the lower forest border bristlecone pine (Pinus longaeva) growing nearby. Spatially, the climate-growth relationship remains strong beyond this localized region, extending over Southern California. Although pinyon pine is not as long lived as the bristlecone pine, these results indicate that the strength of the climate-growth relationship makes this species valuable in developing climate reconstructions in the future. Additionally, the presence of persistent remnant wood at all sampling sites offers an opportunity to extend pinyon records further back in time. Furthermore, the close proximity of pinyon pine to bristlecone pine at these sites presents the possibility of developing multi-species reconstructions using both species.
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.