中国短芒狐尾(Alopecurus aequalis)对甲磺隆抗性的分子机制

IF 2.1 2区 农林科学 Q2 AGRONOMY
Weed Science Pub Date : 2023-04-20 DOI:10.1017/wsc.2023.23
Zhi Tang, Z. Wang, Maling Wang, F. Yin, Min Liao, Haiqun Cao, Ning Zhao
{"title":"中国短芒狐尾(Alopecurus aequalis)对甲磺隆抗性的分子机制","authors":"Zhi Tang, Z. Wang, Maling Wang, F. Yin, Min Liao, Haiqun Cao, Ning Zhao","doi":"10.1017/wsc.2023.23","DOIUrl":null,"url":null,"abstract":"Abstract Shortawn foxtail (Alopecurus aequalis Sobol.) is an obligate wetland plant that is widely distributed throughout Europe, temperate Asia, and North America. In China, it is widespread in the middle and lower reaches of the Yangtze River as a noxious weed in winter cropping fields with a rice (Oryza sativa L.) rotation. The acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl has been widely used to control annual grass and broadleaf weeds, including A. aequalis, in wheat (Triticum aestivum L.) fields, leading to the selection of herbicide-resistant weeds. In this study, an A. aequalis population, AHFT-4, that survived mesosulfuron-methyl at the field-recommended rate (9 g ai ha–1) was collected in Anhui Province. Single-dose testing confirmed that the suspected resistant AHFT-4 had evolved resistance to mesosulfuron-methyl. Target gene sequencing revealed a resistance mutation of Pro-197-Ala in ALS1 of the resistant plants, and a derived cleaved amplified polymorphic sequence marker was developed to specifically detect the mutation. A relative expression assay showed no significant difference in ALS expression between AHFT-4 and a susceptible population without or with mesosulfuron-methyl treatment. Whole-plant dose–response bioassays indicated that AHFT-4 had evolved broad-spectrum cross-resistance to ALS-inhibiting herbicides of all five chemical families tested, with GR50 resistance index (RI) values ranging from 21 to 206. However, it remained susceptible to the photosystem II inhibitor isoproturon. Pretreatment with the cytochrome P450 inhibitor malathion or the glutathione S-transferase inhibitor 4-chloro-7-nitrobenzoxa-diazole had no significant effects on the resistance of AHFT-4 to mesosulfuron-methyl. To our knowledge, this study reports for the first time the ALS gene Pro-197-Ala substitution conferring broad-spectrum cross-resistance to ALS-inhibiting herbicides in A. aequalis.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanism of Resistance to Mesosulfuron-Methyl in Shortawn Foxtail (Alopecurus aequalis) from China\",\"authors\":\"Zhi Tang, Z. Wang, Maling Wang, F. Yin, Min Liao, Haiqun Cao, Ning Zhao\",\"doi\":\"10.1017/wsc.2023.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Shortawn foxtail (Alopecurus aequalis Sobol.) is an obligate wetland plant that is widely distributed throughout Europe, temperate Asia, and North America. In China, it is widespread in the middle and lower reaches of the Yangtze River as a noxious weed in winter cropping fields with a rice (Oryza sativa L.) rotation. The acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl has been widely used to control annual grass and broadleaf weeds, including A. aequalis, in wheat (Triticum aestivum L.) fields, leading to the selection of herbicide-resistant weeds. In this study, an A. aequalis population, AHFT-4, that survived mesosulfuron-methyl at the field-recommended rate (9 g ai ha–1) was collected in Anhui Province. Single-dose testing confirmed that the suspected resistant AHFT-4 had evolved resistance to mesosulfuron-methyl. Target gene sequencing revealed a resistance mutation of Pro-197-Ala in ALS1 of the resistant plants, and a derived cleaved amplified polymorphic sequence marker was developed to specifically detect the mutation. A relative expression assay showed no significant difference in ALS expression between AHFT-4 and a susceptible population without or with mesosulfuron-methyl treatment. Whole-plant dose–response bioassays indicated that AHFT-4 had evolved broad-spectrum cross-resistance to ALS-inhibiting herbicides of all five chemical families tested, with GR50 resistance index (RI) values ranging from 21 to 206. However, it remained susceptible to the photosystem II inhibitor isoproturon. Pretreatment with the cytochrome P450 inhibitor malathion or the glutathione S-transferase inhibitor 4-chloro-7-nitrobenzoxa-diazole had no significant effects on the resistance of AHFT-4 to mesosulfuron-methyl. To our knowledge, this study reports for the first time the ALS gene Pro-197-Ala substitution conferring broad-spectrum cross-resistance to ALS-inhibiting herbicides in A. aequalis.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2023.23\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2023.23","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

短尾狐(Alopecurus aequalis Sobol.)是一种专性湿地植物,广泛分布于欧洲、亚洲温带和北美。在中国,它作为一种有害的杂草广泛分布于长江中下游,在冬季轮作水稻(Oryza sativa L.)田。抑制乙酰乳酸合成酶(acetolactate synthase, ALS)的除草剂甲磺隆-甲基被广泛应用于小麦(Triticum aestivum L.)田间一年生草和阔叶杂草(包括aequalis)的防治,导致了抗除草剂杂草的选择。在这项研究中,a aequalis人口,AHFT-4,幸存mesosulfuron-methyl field-recommended的速度(9 g人工智能农业的收集在安徽省。单剂量试验证实,疑似耐药的AHFT-4已对中硫隆-甲基产生耐药性。靶基因测序结果显示,抗性植物ALS1中存在Pro-197-Ala的抗性突变,并建立了衍生的裂解扩增多态性序列标记来特异性检测该突变。相对表达分析显示,AHFT-4与未处理或经甲磺隆处理的易感人群的ALS表达无显著差异。全株剂量效应生物测定表明,AHFT-4对5个化学家族的als抑制除草剂均具有广谱交叉抗性,GR50抗性指数(RI)在21 ~ 206之间。然而,它仍然对光系统II抑制剂异proturon敏感。细胞色素P450抑制剂马拉硫磷或谷胱甘肽s -转移酶抑制剂4-氯-7-硝基苯并恶二唑预处理对AHFT-4对中硫隆-甲基的耐药性无显著影响。据我们所知,本研究首次报道了ALS基因Pro-197-Ala取代,赋予了平叶草对ALS抑制除草剂的广谱交叉抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Mechanism of Resistance to Mesosulfuron-Methyl in Shortawn Foxtail (Alopecurus aequalis) from China
Abstract Shortawn foxtail (Alopecurus aequalis Sobol.) is an obligate wetland plant that is widely distributed throughout Europe, temperate Asia, and North America. In China, it is widespread in the middle and lower reaches of the Yangtze River as a noxious weed in winter cropping fields with a rice (Oryza sativa L.) rotation. The acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl has been widely used to control annual grass and broadleaf weeds, including A. aequalis, in wheat (Triticum aestivum L.) fields, leading to the selection of herbicide-resistant weeds. In this study, an A. aequalis population, AHFT-4, that survived mesosulfuron-methyl at the field-recommended rate (9 g ai ha–1) was collected in Anhui Province. Single-dose testing confirmed that the suspected resistant AHFT-4 had evolved resistance to mesosulfuron-methyl. Target gene sequencing revealed a resistance mutation of Pro-197-Ala in ALS1 of the resistant plants, and a derived cleaved amplified polymorphic sequence marker was developed to specifically detect the mutation. A relative expression assay showed no significant difference in ALS expression between AHFT-4 and a susceptible population without or with mesosulfuron-methyl treatment. Whole-plant dose–response bioassays indicated that AHFT-4 had evolved broad-spectrum cross-resistance to ALS-inhibiting herbicides of all five chemical families tested, with GR50 resistance index (RI) values ranging from 21 to 206. However, it remained susceptible to the photosystem II inhibitor isoproturon. Pretreatment with the cytochrome P450 inhibitor malathion or the glutathione S-transferase inhibitor 4-chloro-7-nitrobenzoxa-diazole had no significant effects on the resistance of AHFT-4 to mesosulfuron-methyl. To our knowledge, this study reports for the first time the ALS gene Pro-197-Ala substitution conferring broad-spectrum cross-resistance to ALS-inhibiting herbicides in A. aequalis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weed Science
Weed Science 农林科学-农艺学
CiteScore
4.60
自引率
12.00%
发文量
64
审稿时长
12-24 weeks
期刊介绍: Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include: - the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds - herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation - ecology of cropping and other agricultural systems as they relate to weed management - biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops - effect of weed management on soil, air and water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信