{"title":"未来对撞机中的长寿命粒子","authors":"Rebeca Gonzalez Suarez","doi":"10.5506/APhysPolB.52.953","DOIUrl":null,"url":null,"abstract":"Long-lived particles have significant enough lifetimes as to, when produced in collisions, leave a distinct signature in the detectors. Driven by increasingly higher energies, trigger and reconstruction algorithms at particle colliders are optimized for increasingly heavier particles, which in turn, tend to be short-lived. This makes searches for long-lived particles difficult, usually requiring dedicated methods and sometimes dedicated hardware top spot them. However, taking upon the challenge brings enormous potential, since new, long-lived particles feature in a variety of promising new physics models that could answer most of the open questions of the standard model, such as: neutrino masses, Dark Matter, or the matter-antimatter unbalance in the Universe.","PeriodicalId":7060,"journal":{"name":"Acta Physica Polonica B","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-lived Particles at Future Colliders\",\"authors\":\"Rebeca Gonzalez Suarez\",\"doi\":\"10.5506/APhysPolB.52.953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-lived particles have significant enough lifetimes as to, when produced in collisions, leave a distinct signature in the detectors. Driven by increasingly higher energies, trigger and reconstruction algorithms at particle colliders are optimized for increasingly heavier particles, which in turn, tend to be short-lived. This makes searches for long-lived particles difficult, usually requiring dedicated methods and sometimes dedicated hardware top spot them. However, taking upon the challenge brings enormous potential, since new, long-lived particles feature in a variety of promising new physics models that could answer most of the open questions of the standard model, such as: neutrino masses, Dark Matter, or the matter-antimatter unbalance in the Universe.\",\"PeriodicalId\":7060,\"journal\":{\"name\":\"Acta Physica Polonica B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5506/APhysPolB.52.953\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5506/APhysPolB.52.953","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Long-lived particles have significant enough lifetimes as to, when produced in collisions, leave a distinct signature in the detectors. Driven by increasingly higher energies, trigger and reconstruction algorithms at particle colliders are optimized for increasingly heavier particles, which in turn, tend to be short-lived. This makes searches for long-lived particles difficult, usually requiring dedicated methods and sometimes dedicated hardware top spot them. However, taking upon the challenge brings enormous potential, since new, long-lived particles feature in a variety of promising new physics models that could answer most of the open questions of the standard model, such as: neutrino masses, Dark Matter, or the matter-antimatter unbalance in the Universe.
期刊介绍:
Acta Physica Polonica B covers the following areas of physics:
-General and Mathematical Physics-
Particle Physics and Field Theory-
Nuclear Physics-
Theory of Relativity and Astrophysics-
Statistical Physics