Hellinger和近似Lévy驱动SDE的总变差距离

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
E. Cl'ement
{"title":"Hellinger和近似Lévy驱动SDE的总变差距离","authors":"E. Cl'ement","doi":"10.1214/22-aap1863","DOIUrl":null,"url":null,"abstract":"In this paper, we get some convergence rates in total variation distance in approximating discretized paths of L{\\'e}vy driven stochastic differential equations, assuming that the driving process is locally stable. The particular case of the Euler approximation is studied. Our results are based on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hellinger and total variation distance in approximating Lévy driven SDEs\",\"authors\":\"E. Cl'ement\",\"doi\":\"10.1214/22-aap1863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we get some convergence rates in total variation distance in approximating discretized paths of L{\\\\'e}vy driven stochastic differential equations, assuming that the driving process is locally stable. The particular case of the Euler approximation is studied. Our results are based on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1863\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1863","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文在L{\'e}vy驱动的随机微分方程的驱动过程是局部稳定的情况下,得到了其离散路径的近似在总变差距离上的收敛速率。研究了欧拉近似的特殊情况。我们的结果是基于使用Malliavin微积分对跳跃过程获得的海灵格距离的尖锐局部估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hellinger and total variation distance in approximating Lévy driven SDEs
In this paper, we get some convergence rates in total variation distance in approximating discretized paths of L{\'e}vy driven stochastic differential equations, assuming that the driving process is locally stable. The particular case of the Euler approximation is studied. Our results are based on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信