锥形喷嘴实验喉部流动特性的数值分析

S. L. B. Tolentino Masgo, María Alejandra Parco, S. Caraballo, Leonardo Lacruz, V. Marcano, John Ferreira, Jorge Mírez
{"title":"锥形喷嘴实验喉部流动特性的数值分析","authors":"S. L. B. Tolentino Masgo, María Alejandra Parco, S. Caraballo, Leonardo Lacruz, V. Marcano, John Ferreira, Jorge Mírez","doi":"10.29019/enfoqueute.676","DOIUrl":null,"url":null,"abstract":"The flow pattern in supersonic nozzles is defined by the aerodynamic profiles of the geometry of the internal walls, among other parameters, the throat being a critical section. In the present work, the objective is to analyze the behavior of the flow in the straight section of the throat of an experimental conical nozzle of a solid fuel probe rocket engine. The over-expanded flow was simulated with the ANSYS-Fluent code in a 2D computational domain, using the RANS model and the Menter turbulence model, and the Sutherland equation for viscosity as a function of the temperature. Five case studies were performed for the throat length in the range of 1-10 mm. Fluctuations of Mach number, pressure and temperature, oblique shock waves in the throat section were obtained for the length of 10 mm; for shorter lengths the intensity of the shock magnitude decreased. It is concluded that, for the throat length of 1 mm, the flow is transonic without the presence of oblique shocks. In the diverging section, shock waves vary in intensity and change position.","PeriodicalId":72918,"journal":{"name":"Enfoque UTE : revista cientifica","volume":"12 1","pages":"12-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Análisis numérico del comportamiento del flujo en la sección de la garganta de una tobera cónica experimental\",\"authors\":\"S. L. B. Tolentino Masgo, María Alejandra Parco, S. Caraballo, Leonardo Lacruz, V. Marcano, John Ferreira, Jorge Mírez\",\"doi\":\"10.29019/enfoqueute.676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow pattern in supersonic nozzles is defined by the aerodynamic profiles of the geometry of the internal walls, among other parameters, the throat being a critical section. In the present work, the objective is to analyze the behavior of the flow in the straight section of the throat of an experimental conical nozzle of a solid fuel probe rocket engine. The over-expanded flow was simulated with the ANSYS-Fluent code in a 2D computational domain, using the RANS model and the Menter turbulence model, and the Sutherland equation for viscosity as a function of the temperature. Five case studies were performed for the throat length in the range of 1-10 mm. Fluctuations of Mach number, pressure and temperature, oblique shock waves in the throat section were obtained for the length of 10 mm; for shorter lengths the intensity of the shock magnitude decreased. It is concluded that, for the throat length of 1 mm, the flow is transonic without the presence of oblique shocks. In the diverging section, shock waves vary in intensity and change position.\",\"PeriodicalId\":72918,\"journal\":{\"name\":\"Enfoque UTE : revista cientifica\",\"volume\":\"12 1\",\"pages\":\"12-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enfoque UTE : revista cientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29019/enfoqueute.676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enfoque UTE : revista cientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29019/enfoqueute.676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

超声速喷管的流型是由内部壁面几何形状的气动分布来定义的,在其他参数中,喉道是一个临界截面。本文的目的是分析固体燃料探测火箭发动机实验用锥形喷管喉部直段内的流动特性。利用ANSYS-Fluent程序,采用RANS模型和Menter湍流模型,以及粘度随温度变化的Sutherland方程,在二维计算域中对过膨胀流动进行了模拟。在喉长1-10毫米范围内进行了5例病例研究。得到了长度为10 mm的喉部段马赫数、压力和温度的波动以及斜激波;对于较短的长度,激波强度减小。得出的结论是,喉道长度为1mm时,流动是跨音速的,没有斜激波的存在。在发散段,激波强度变化,位置变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Análisis numérico del comportamiento del flujo en la sección de la garganta de una tobera cónica experimental
The flow pattern in supersonic nozzles is defined by the aerodynamic profiles of the geometry of the internal walls, among other parameters, the throat being a critical section. In the present work, the objective is to analyze the behavior of the flow in the straight section of the throat of an experimental conical nozzle of a solid fuel probe rocket engine. The over-expanded flow was simulated with the ANSYS-Fluent code in a 2D computational domain, using the RANS model and the Menter turbulence model, and the Sutherland equation for viscosity as a function of the temperature. Five case studies were performed for the throat length in the range of 1-10 mm. Fluctuations of Mach number, pressure and temperature, oblique shock waves in the throat section were obtained for the length of 10 mm; for shorter lengths the intensity of the shock magnitude decreased. It is concluded that, for the throat length of 1 mm, the flow is transonic without the presence of oblique shocks. In the diverging section, shock waves vary in intensity and change position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信