结合贝叶斯优化机器学习预测的多通道圆筒干燥机冷凝水换热系数实验研究

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Lijie Qiao, Jixian Dong, Kunliang Zhang, Xiangquan Chen, Zhuozhi Yang, Huan Liu, Sha Wang, Yan Dong, Meng An
{"title":"结合贝叶斯优化机器学习预测的多通道圆筒干燥机冷凝水换热系数实验研究","authors":"Lijie Qiao, Jixian Dong, Kunliang Zhang, Xiangquan Chen, Zhuozhi Yang, Huan Liu, Sha Wang, Yan Dong, Meng An","doi":"10.1080/07373937.2023.2236197","DOIUrl":null,"url":null,"abstract":"Abstract The condensation heat transfer coefficient of the multi-channel dryer, one of the key component of paper-making machine, directly determines the efficiency of heat energy utilization. However, the prediction of condensation heat transfer coefficient remains a challenge because the heat transfer characteristics in multi-channel dryer is a complex fundamental issue involving the thermal behavior of two-phase fluid systems. Herein, we successfully developed the four supervised machine learning models to predict the heat transfer coefficient of a multi-channel cylinder dryer under different working conditions. The multi-channel cylinder dryer experiments under different steam mass flux and cooling water mass flow rates were performed and the measured data is used as the input data for training. Interestingly, the four trained Bayesian-optimized machine models present the excellent capability of prediction for condensation heat transfer coefficient of multi-channel cylinder dryer, where the values of R 2 for tested Bayesian-optimized-based SVR, ANN, linear SVR, and RF are 0.983, 0.997, 0.996, and 0.953, respectively. In addition, the feature importance of descriptors is quantified based on a random forest algorithm. Our study suggests that machine learning models can effectively predict the condensate heat transfer coefficient of two-phase fluid systems, which not only would be beneficial to optimizing the structures and operation parameters of multi-channel cylinder dryer in the industry but to develop a reasonable correlation of heat transfer coefficient in fundamental research.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on condensate heat transfer coefficient of multi-channel cylinder dryer integrated with Bayesian-optimized machine learning prediction\",\"authors\":\"Lijie Qiao, Jixian Dong, Kunliang Zhang, Xiangquan Chen, Zhuozhi Yang, Huan Liu, Sha Wang, Yan Dong, Meng An\",\"doi\":\"10.1080/07373937.2023.2236197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The condensation heat transfer coefficient of the multi-channel dryer, one of the key component of paper-making machine, directly determines the efficiency of heat energy utilization. However, the prediction of condensation heat transfer coefficient remains a challenge because the heat transfer characteristics in multi-channel dryer is a complex fundamental issue involving the thermal behavior of two-phase fluid systems. Herein, we successfully developed the four supervised machine learning models to predict the heat transfer coefficient of a multi-channel cylinder dryer under different working conditions. The multi-channel cylinder dryer experiments under different steam mass flux and cooling water mass flow rates were performed and the measured data is used as the input data for training. Interestingly, the four trained Bayesian-optimized machine models present the excellent capability of prediction for condensation heat transfer coefficient of multi-channel cylinder dryer, where the values of R 2 for tested Bayesian-optimized-based SVR, ANN, linear SVR, and RF are 0.983, 0.997, 0.996, and 0.953, respectively. In addition, the feature importance of descriptors is quantified based on a random forest algorithm. Our study suggests that machine learning models can effectively predict the condensate heat transfer coefficient of two-phase fluid systems, which not only would be beneficial to optimizing the structures and operation parameters of multi-channel cylinder dryer in the industry but to develop a reasonable correlation of heat transfer coefficient in fundamental research.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2236197\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2236197","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on condensate heat transfer coefficient of multi-channel cylinder dryer integrated with Bayesian-optimized machine learning prediction
Abstract The condensation heat transfer coefficient of the multi-channel dryer, one of the key component of paper-making machine, directly determines the efficiency of heat energy utilization. However, the prediction of condensation heat transfer coefficient remains a challenge because the heat transfer characteristics in multi-channel dryer is a complex fundamental issue involving the thermal behavior of two-phase fluid systems. Herein, we successfully developed the four supervised machine learning models to predict the heat transfer coefficient of a multi-channel cylinder dryer under different working conditions. The multi-channel cylinder dryer experiments under different steam mass flux and cooling water mass flow rates were performed and the measured data is used as the input data for training. Interestingly, the four trained Bayesian-optimized machine models present the excellent capability of prediction for condensation heat transfer coefficient of multi-channel cylinder dryer, where the values of R 2 for tested Bayesian-optimized-based SVR, ANN, linear SVR, and RF are 0.983, 0.997, 0.996, and 0.953, respectively. In addition, the feature importance of descriptors is quantified based on a random forest algorithm. Our study suggests that machine learning models can effectively predict the condensate heat transfer coefficient of two-phase fluid systems, which not only would be beneficial to optimizing the structures and operation parameters of multi-channel cylinder dryer in the industry but to develop a reasonable correlation of heat transfer coefficient in fundamental research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drying Technology
Drying Technology 工程技术-工程:化工
CiteScore
7.40
自引率
15.20%
发文量
133
审稿时长
2 months
期刊介绍: Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics. Articles in this multi-disciplinary journal cover the following themes: -Fundamental and applied aspects of dryers in diverse industrial sectors- Mathematical modeling of drying and dryers- Computer modeling of transport processes in multi-phase systems- Material science aspects of drying- Transport phenomena in porous media- Design, scale-up, control and off-design analysis of dryers- Energy, environmental, safety and techno-economic aspects- Quality parameters in drying operations- Pre- and post-drying operations- Novel drying technologies. This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信