向量值一空间的度量完备形式

IF 0.6 3区 数学 Q3 MATHEMATICS
Nicola Cavallucci, Zhe Su
{"title":"向量值一空间的度量完备形式","authors":"Nicola Cavallucci,&nbsp;Zhe Su","doi":"10.1007/s10455-023-09916-x","DOIUrl":null,"url":null,"abstract":"<div><p>The space of full-ranked one-forms on a smooth, orientable, compact manifold (possibly with boundary) is metrically incomplete with respect to the induced geodesic distance of the generalized Ebin metric. We show a distance equality between the induced geodesic distances of the generalized Ebin metric on the space of full-ranked one-forms and the corresponding Riemannian metric defined on each fiber. Using this result, we immediately have a concrete description of the metric completion of the space of full-ranked one-forms. Additionally, we study the relationship between the space of full-ranked one-forms and the space of all Riemannian metrics, leading to quotient structures for the space of Riemannian metrics and its completion.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09916-x.pdf","citationCount":"1","resultStr":"{\"title\":\"The metric completion of the space of vector-valued one-forms\",\"authors\":\"Nicola Cavallucci,&nbsp;Zhe Su\",\"doi\":\"10.1007/s10455-023-09916-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The space of full-ranked one-forms on a smooth, orientable, compact manifold (possibly with boundary) is metrically incomplete with respect to the induced geodesic distance of the generalized Ebin metric. We show a distance equality between the induced geodesic distances of the generalized Ebin metric on the space of full-ranked one-forms and the corresponding Riemannian metric defined on each fiber. Using this result, we immediately have a concrete description of the metric completion of the space of full-ranked one-forms. Additionally, we study the relationship between the space of full-ranked one-forms and the space of all Riemannian metrics, leading to quotient structures for the space of Riemannian metrics and its completion.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09916-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09916-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09916-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

关于广义Ebin度量的诱导测地距离,光滑、可定向、紧致流形(可能有边界)上的全秩一形式的空间是度量不完备的。我们证明了全秩一形式空间上广义Ebin度量的诱导测地距离与每个纤维上定义的相应黎曼度量之间的距离相等。利用这个结果,我们立即得到了全秩一形式空间的度量完备的具体描述。此外,我们还研究了全秩一形式的空间与所有黎曼度量的空间之间的关系,得到了黎曼度量空间的商结构及其完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The metric completion of the space of vector-valued one-forms

The space of full-ranked one-forms on a smooth, orientable, compact manifold (possibly with boundary) is metrically incomplete with respect to the induced geodesic distance of the generalized Ebin metric. We show a distance equality between the induced geodesic distances of the generalized Ebin metric on the space of full-ranked one-forms and the corresponding Riemannian metric defined on each fiber. Using this result, we immediately have a concrete description of the metric completion of the space of full-ranked one-forms. Additionally, we study the relationship between the space of full-ranked one-forms and the space of all Riemannian metrics, leading to quotient structures for the space of Riemannian metrics and its completion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信