S. N. Moghaddas Tafreshi, S. Kheiri, M. Azizian, A. R. Dawson
{"title":"静循环荷载下土工格室加筋床:土壤密度和粒度的影响","authors":"S. N. Moghaddas Tafreshi, S. Kheiri, M. Azizian, A. R. Dawson","doi":"10.1680/jgein.22.00259","DOIUrl":null,"url":null,"abstract":"This paper reports on a series of static and cyclic plate loading tests performed on a weak unreinforced sand bed in a test pit. The weak sand was covered by a 160 mm thick layer comprised of one of three compacted soil types which was either unreinforced or geocell-reinforced. The purpose was to investigate the effects of soil density and grain size as filler materials for the covering layer. The three covering soils were granular with average particle sizes of 2.2 (Soil 1), 6.14 (Soil 2), and 8.47 (Soil 3) mm. Under static loading, the bearing pressure increased on average 23% when the average grain size of the upper, unreinforced, soil layer changed from 2.20 mm to 8.47 mm. The improvement in bearing pressure was about 37% due to the use of a soil-filled geocell but, unlike the unreinforced situation, employing larger soil grains to fill the geocell pockets didn't show significant further improvement. For cyclic loading tests, the maximum settlement reduction by employing a geocell layer was about 50% for Soil 1. Whether loaded statically or cyclically, increasing soil density likely would be more efficient for improving geocell performance than by employing a soil having larger particle sizes.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geocell-reinforced bed under static and cyclic loads: Effect of soil density and grain size\",\"authors\":\"S. N. Moghaddas Tafreshi, S. Kheiri, M. Azizian, A. R. Dawson\",\"doi\":\"10.1680/jgein.22.00259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on a series of static and cyclic plate loading tests performed on a weak unreinforced sand bed in a test pit. The weak sand was covered by a 160 mm thick layer comprised of one of three compacted soil types which was either unreinforced or geocell-reinforced. The purpose was to investigate the effects of soil density and grain size as filler materials for the covering layer. The three covering soils were granular with average particle sizes of 2.2 (Soil 1), 6.14 (Soil 2), and 8.47 (Soil 3) mm. Under static loading, the bearing pressure increased on average 23% when the average grain size of the upper, unreinforced, soil layer changed from 2.20 mm to 8.47 mm. The improvement in bearing pressure was about 37% due to the use of a soil-filled geocell but, unlike the unreinforced situation, employing larger soil grains to fill the geocell pockets didn't show significant further improvement. For cyclic loading tests, the maximum settlement reduction by employing a geocell layer was about 50% for Soil 1. Whether loaded statically or cyclically, increasing soil density likely would be more efficient for improving geocell performance than by employing a soil having larger particle sizes.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.22.00259\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.22.00259","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Geocell-reinforced bed under static and cyclic loads: Effect of soil density and grain size
This paper reports on a series of static and cyclic plate loading tests performed on a weak unreinforced sand bed in a test pit. The weak sand was covered by a 160 mm thick layer comprised of one of three compacted soil types which was either unreinforced or geocell-reinforced. The purpose was to investigate the effects of soil density and grain size as filler materials for the covering layer. The three covering soils were granular with average particle sizes of 2.2 (Soil 1), 6.14 (Soil 2), and 8.47 (Soil 3) mm. Under static loading, the bearing pressure increased on average 23% when the average grain size of the upper, unreinforced, soil layer changed from 2.20 mm to 8.47 mm. The improvement in bearing pressure was about 37% due to the use of a soil-filled geocell but, unlike the unreinforced situation, employing larger soil grains to fill the geocell pockets didn't show significant further improvement. For cyclic loading tests, the maximum settlement reduction by employing a geocell layer was about 50% for Soil 1. Whether loaded statically or cyclically, increasing soil density likely would be more efficient for improving geocell performance than by employing a soil having larger particle sizes.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.