{"title":"用微流控芯片制备单分散液滴和微胶囊:方法和应用综述","authors":"Weiguang Su, Bing Han, S. Yeboah, D. Du, Li Wang","doi":"10.1515/revce-2022-0060","DOIUrl":null,"url":null,"abstract":"Abstract Microfluidics has been applied in the preparation of monodisperse droplets and microcapsules due to its high encapsulation efficiency, its ability to create uniform particle sizes, and its capacity to control core–shell ratio and structure. To bring to the fore methodologies for the fabrication and application of monodisperse microcapsules using microfluidics, we present a review of the design, structure, materials, and surface modification techniques of various microfluidic chips. The review also covers fabrication methods, operating parameters and regulation methods of single and multiple monodisperse emulsion droplets fabricated from various microfluidic devices. Our findings show that particle size of monodisperse droplets depend mainly on microchannel characteristic size and flow rate, with particle size increasing with larger microchannel but decreasing with higher continuous phase flow rate. We additionally reviewed and compared various fabrication methods for monodisperse microcapsules, such as interfacial polymerization, free-radical polymerization, ionic cross-linking, and solvent evaporation. We further reviewed and examined the application of monodisperse microcapsules in biology applications, food engineering, composite materials development, and pharmaceutical industry. We found that high-throughput microfluidics for scale-up monodisperse microcapsule preparation towards uniform degradation and targeted release properties of monodisperse microcapsules would be key innovative direction for future applications.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of monodisperse droplets and microcapsules using microfluidic chips: a review of methodologies and applications\",\"authors\":\"Weiguang Su, Bing Han, S. Yeboah, D. Du, Li Wang\",\"doi\":\"10.1515/revce-2022-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microfluidics has been applied in the preparation of monodisperse droplets and microcapsules due to its high encapsulation efficiency, its ability to create uniform particle sizes, and its capacity to control core–shell ratio and structure. To bring to the fore methodologies for the fabrication and application of monodisperse microcapsules using microfluidics, we present a review of the design, structure, materials, and surface modification techniques of various microfluidic chips. The review also covers fabrication methods, operating parameters and regulation methods of single and multiple monodisperse emulsion droplets fabricated from various microfluidic devices. Our findings show that particle size of monodisperse droplets depend mainly on microchannel characteristic size and flow rate, with particle size increasing with larger microchannel but decreasing with higher continuous phase flow rate. We additionally reviewed and compared various fabrication methods for monodisperse microcapsules, such as interfacial polymerization, free-radical polymerization, ionic cross-linking, and solvent evaporation. We further reviewed and examined the application of monodisperse microcapsules in biology applications, food engineering, composite materials development, and pharmaceutical industry. We found that high-throughput microfluidics for scale-up monodisperse microcapsule preparation towards uniform degradation and targeted release properties of monodisperse microcapsules would be key innovative direction for future applications.\",\"PeriodicalId\":54485,\"journal\":{\"name\":\"Reviews in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/revce-2022-0060\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0060","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of monodisperse droplets and microcapsules using microfluidic chips: a review of methodologies and applications
Abstract Microfluidics has been applied in the preparation of monodisperse droplets and microcapsules due to its high encapsulation efficiency, its ability to create uniform particle sizes, and its capacity to control core–shell ratio and structure. To bring to the fore methodologies for the fabrication and application of monodisperse microcapsules using microfluidics, we present a review of the design, structure, materials, and surface modification techniques of various microfluidic chips. The review also covers fabrication methods, operating parameters and regulation methods of single and multiple monodisperse emulsion droplets fabricated from various microfluidic devices. Our findings show that particle size of monodisperse droplets depend mainly on microchannel characteristic size and flow rate, with particle size increasing with larger microchannel but decreasing with higher continuous phase flow rate. We additionally reviewed and compared various fabrication methods for monodisperse microcapsules, such as interfacial polymerization, free-radical polymerization, ionic cross-linking, and solvent evaporation. We further reviewed and examined the application of monodisperse microcapsules in biology applications, food engineering, composite materials development, and pharmaceutical industry. We found that high-throughput microfluidics for scale-up monodisperse microcapsule preparation towards uniform degradation and targeted release properties of monodisperse microcapsules would be key innovative direction for future applications.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.