雪花欧氏线的产品不是最小的向下看

Pub Date : 2017-08-09 DOI:10.1515/agms-2017-0005
Matthieu Joseph, T. Rajala
{"title":"雪花欧氏线的产品不是最小的向下看","authors":"Matthieu Joseph, T. Rajala","doi":"10.1515/agms-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2017-0005","citationCount":"0","resultStr":"{\"title\":\"Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down\",\"authors\":\"Matthieu Joseph, T. Rajala\",\"doi\":\"10.1515/agms-2017-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2017-0005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2017-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文证明了雪花欧几里得线的积在向下看时不是极小的。这个问题是大卫和塞姆斯在《破碎的分形与破碎的梦》第11.17题中提出的。这个证明使用了Le Donne, Li和Rajala提出的论据来证明海森堡群在向下看时不是最小的。通过一种捷径的方法,我们定义了一个新的距离d,使得雪花欧几里得线的乘积俯视(RN, d),而不是相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
Abstract We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信