环面上停止随机游走轨迹的交错极限

Pub Date : 2021-08-28 DOI:10.1017/apr.2023.24
Antal A. J'arai, Minwei Sun
{"title":"环面上停止随机游走轨迹的交错极限","authors":"Antal A. J'arai, Minwei Sun","doi":"10.1017/apr.2023.24","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We consider a simple random walk on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathbb{Z}^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> started at the origin and stopped on its first exit time from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline2.png\" />\n\t\t<jats:tex-math>\n$({-}L,L)^d \\cap \\mathbb{Z}^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Write <jats:italic>L</jats:italic> in the form <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline3.png\" />\n\t\t<jats:tex-math>\n$L = m N$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline4.png\" />\n\t\t<jats:tex-math>\n$m = m(N)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:italic>N</jats:italic> an integer going to infinity in such a way that <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline5.png\" />\n\t\t<jats:tex-math>\n$L^2 \\sim A N^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for some real constant <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline6.png\" />\n\t\t<jats:tex-math>\n$A \\gt 0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Our main result is that for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline7.png\" />\n\t\t<jats:tex-math>\n$d \\ge 3$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, the projection of the stopped trajectory to the <jats:italic>N</jats:italic>-torus locally converges, away from the origin, to an interlacement process at level <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline8.png\" />\n\t\t<jats:tex-math>\n$A d \\sigma_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline9.png\" />\n\t\t<jats:tex-math>\n$\\sigma_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the exit time of a Brownian motion from the unit cube <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline10.png\" />\n\t\t<jats:tex-math>\n$({-}1,1)^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlacement limit of a stopped random walk trace on a torus\",\"authors\":\"Antal A. J'arai, Minwei Sun\",\"doi\":\"10.1017/apr.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We consider a simple random walk on <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathbb{Z}^d$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> started at the origin and stopped on its first exit time from <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$({-}L,L)^d \\\\cap \\\\mathbb{Z}^d$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Write <jats:italic>L</jats:italic> in the form <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$L = m N$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> with <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$m = m(N)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:italic>N</jats:italic> an integer going to infinity in such a way that <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$L^2 \\\\sim A N^d$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> for some real constant <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$A \\\\gt 0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Our main result is that for <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$d \\\\ge 3$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, the projection of the stopped trajectory to the <jats:italic>N</jats:italic>-torus locally converges, away from the origin, to an interlacement process at level <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$A d \\\\sigma_1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline9.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\sigma_1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is the exit time of a Brownian motion from the unit cube <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0001867823000241_inline10.png\\\" />\\n\\t\\t<jats:tex-math>\\n$({-}1,1)^d$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2023.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在$\mathbb{Z}^d$上进行一个简单的随机漫步,从原点开始,并在从$({-}L,L)^d \cap \mathbb{Z}^d$的第一个退出时间停止。把L写成$L = m N$的形式,其中$m = m(N)$ N是一个趋于无穷的整数,这样$L^2 \sim A N^d$对于某个实常数$A \gt 0$。我们的主要结果是,对于$d \ge 3$,停止轨迹到n环面的投影局部收敛,远离原点,到水平$A d \sigma_1$的交错过程,其中$\sigma_1$是独立于交错过程的单位立方体$({-}1,1)^d$的布朗运动的退出时间。上述问题是对Windisch(2008)和Sznitman(2009)的结果的变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Interlacement limit of a stopped random walk trace on a torus
We consider a simple random walk on $\mathbb{Z}^d$ started at the origin and stopped on its first exit time from $({-}L,L)^d \cap \mathbb{Z}^d$ . Write L in the form $L = m N$ with $m = m(N)$ and N an integer going to infinity in such a way that $L^2 \sim A N^d$ for some real constant $A \gt 0$ . Our main result is that for $d \ge 3$ , the projection of the stopped trajectory to the N-torus locally converges, away from the origin, to an interlacement process at level $A d \sigma_1$ , where $\sigma_1$ is the exit time of a Brownian motion from the unit cube $({-}1,1)^d$ that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信