朗多-金兹堡模型的无穷远上的纤维

IF 1.2 3区 数学 Q1 MATHEMATICS
I. Cheltsov, V. Przyjalkowski
{"title":"朗多-金兹堡模型的无穷远上的纤维","authors":"I. Cheltsov, V. Przyjalkowski","doi":"10.4310/cntp.2022.v16.n4.a1","DOIUrl":null,"url":null,"abstract":"We conjecture that the number of components of the fiber over infinity of Landau--Ginzburg model for a smooth Fano variety $X$ equals the dimension of the anticanonical system of $X$. We verify this conjecture for log Calabi--Yau compactifications of toric Landau--Ginzburg models for smooth Fano threefolds, complete intersections, and some toric varieties.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fibers over infinity of Landau–Ginzburg models\",\"authors\":\"I. Cheltsov, V. Przyjalkowski\",\"doi\":\"10.4310/cntp.2022.v16.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conjecture that the number of components of the fiber over infinity of Landau--Ginzburg model for a smooth Fano variety $X$ equals the dimension of the anticanonical system of $X$. We verify this conjecture for log Calabi--Yau compactifications of toric Landau--Ginzburg models for smooth Fano threefolds, complete intersections, and some toric varieties.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n4.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n4.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们猜想光滑Fano变量$X$的Landau-Ginzburg模型无穷大上纤维的组分数等于$X$反正则系统的维数。我们对复曲面Landau-Ginzburg模型在光滑Fano三重、完全交和一些复曲面变种上的log-Carabi-Yau紧化的猜想进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibers over infinity of Landau–Ginzburg models
We conjecture that the number of components of the fiber over infinity of Landau--Ginzburg model for a smooth Fano variety $X$ equals the dimension of the anticanonical system of $X$. We verify this conjecture for log Calabi--Yau compactifications of toric Landau--Ginzburg models for smooth Fano threefolds, complete intersections, and some toric varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信